Bicomplex Modules with Indefinite Inner Product

被引:0
|
作者
A. Banerjee
R. Deb
机构
[1] Krishnath College,Department of Mathematics
来源
关键词
Bicomplex module; Indefinite inner product; Fundamental decomposition; Fundamental symmetry; 30G35; 46C20; 06F25; 16W80;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we provide a systematic investigation of bicomplex indefinite inner product modules. Based on the partial ordering defined on the set of hyperbolic numbers, we classify the elements of the modules into positive, negative and neutral types. Our study includes the orthogonality, isotropic elements, maximal non-degenerate submodule, maximal semi definite submodule and ortho-complemented submodules of bicomplex inner product modules. We then decompose such a module fundamentally into a positive definite, a negative definite and a neutral submodules that ensures the existence of a fundamental symmetry associated with a positive definite inner product for non-degenerate case.
引用
收藏
相关论文
共 50 条
  • [41] Numerical radius inequalities for indefinite inner product space operators
    Ren, Conghui
    Wu, Deyu
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [42] On sums of range symmetric matrices with reference to indefinite inner product
    Krishnaswamy, D.
    Narayanasamy, A.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 499 - 510
  • [43] Moore-Penrose Inverse in Indefinite Inner Product Spaces
    Radojevic, Ivana M.
    Djordjevic, Dragan S.
    [J]. FILOMAT, 2017, 31 (12) : 3847 - 3857
  • [44] Polar decompositions of normal operators in indefinite inner product spaces
    Mehl, Christian
    Ran, Andre C. M.
    Rodman, Leiba
    [J]. OPERATOR THEORY IN KREIN SPACES AND NONLINEAR EIGENVALUE PROBLEMS, 2006, 162 : 277 - 292
  • [45] MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE
    Kamaraj, K.
    Sivakumar, K. C.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 19 (1-2) : 297 - 310
  • [46] Numerical radius inequalities for indefinite inner product space operators
    Conghui Ren
    Deyu Wu
    [J]. Advances in Operator Theory, 2023, 8
  • [47] New results for EP matrices in indefinite inner product spaces
    Ivana M. Radojević
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 91 - 103
  • [48] Gruss type inequalities in inner product modules
    Ilisevic, D
    Varosanec, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) : 3271 - 3280
  • [49] Characterization of orthogonality preserving mappings in indefinite inner product spaces
    Sylviani, Sisilia
    Garminia, Hanni
    Astuti, Pudji
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 26 (01): : 10 - 15
  • [50] Canonical matrices of isometric operators on indefinite inner product spaces
    Sergeichuk, Vladimir V.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (01) : 154 - 192