Bicomplex Modules with Indefinite Inner Product

被引:0
|
作者
A. Banerjee
R. Deb
机构
[1] Krishnath College,Department of Mathematics
来源
关键词
Bicomplex module; Indefinite inner product; Fundamental decomposition; Fundamental symmetry; 30G35; 46C20; 06F25; 16W80;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we provide a systematic investigation of bicomplex indefinite inner product modules. Based on the partial ordering defined on the set of hyperbolic numbers, we classify the elements of the modules into positive, negative and neutral types. Our study includes the orthogonality, isotropic elements, maximal non-degenerate submodule, maximal semi definite submodule and ortho-complemented submodules of bicomplex inner product modules. We then decompose such a module fundamentally into a positive definite, a negative definite and a neutral submodules that ensures the existence of a fundamental symmetry associated with a positive definite inner product for non-degenerate case.
引用
收藏
相关论文
共 50 条
  • [1] Bicomplex Modules with Indefinite Inner Product
    Banerjee, A.
    Deb, R.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)
  • [2] CANONICAL QUANTIZATION WITH INDEFINITE INNER PRODUCT
    JAKOBCZYK, L
    [J]. ANNALS OF PHYSICS, 1985, 161 (02) : 314 - 336
  • [3] SHIFTS ON INDEFINITE INNER PRODUCT SPACES
    MCENNIS, BW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1979, 81 (01) : 113 - 130
  • [4] On Norms in Indefinite Inner Product Spaces
    Langer, Matthias
    Luger, Annemarie
    [J]. RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES, 2010, 198 : 259 - +
  • [5] HILBERT SPACE WITH AN INDEFINITE INNER PRODUCT
    MCKELVEY, RW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (02): : 225 - &
  • [6] ON A PATHOLOGY IN INDEFINITE METRIC INNER PRODUCT SPACE
    ARAKI, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (01) : 121 - 128
  • [7] A characterization for *-isomorphisms in an indefinite inner product space
    Sivakumar, K. C.
    Kamaraj, K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1139 - 1144
  • [8] Topological Bicomplex Modules
    Kumar, Romesh
    Saini, Heera
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (04) : 1249 - 1270
  • [9] Topological Bicomplex Modules
    Romesh Kumar
    Heera Saini
    [J]. Advances in Applied Clifford Algebras, 2016, 26 : 1249 - 1270
  • [10] The bicomplex tensor product and a bicomplex Choi theorem
    Alpay, Daniel
    De Martino, Antonino
    Diki, Kamal
    Vajiac, Mihaela
    [J]. PHYSICA SCRIPTA, 2024, 99 (09)