Existence of ground state solutions to a class of fractional Schrödinger system with linear and nonlinear couplings

被引:0
|
作者
Xinsheng Du
Anmin Mao
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
关键词
Fractional Schrödinger system; Variational methods; Ground state solution; Nehari manifold; 35J50; 35A01; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of ground state solutions to the following fractional Schrödinger system with linear and nonlinear couplings: {(−△)su+(λ1+V(x))u+kv=μ1u3+βuv2,in R3,(−△)sv+(λ2+V(x))v+ku=μ2v3+βu2v,in R3,u,v∈Hs(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\triangle )^{s}u+(\lambda _{1}+V(x))u+kv=\mu _{1}u^{3}+\beta uv^{2}, \quad \text{in } R^{3},\\ (-\triangle )^{s}v+(\lambda _{2}+V(x))v+ku=\mu _{2}v^{3}+ \beta u^{2}v, \quad \text{in } R^{3},\\ u, v\in H^{s}(R^{3}), \end{cases} $$\end{document} where (−△)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\triangle )^{s}$\end{document} denotes the fractional Laplacian of order s∈(34,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\in (\frac{3}{4},1)$\end{document}. Under some assumptions of the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} and the linear and nonlinear coupling constants k, β, we prove some results for the existence of ground state solutions for the fractional Laplacian systems by using variational methods.
引用
收藏
相关论文
共 50 条
  • [21] Existence and Concentration of Solutions for the Sublinear Fractional Schrödinger–Poisson System
    Guofeng Che
    Haibo Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2843 - 2863
  • [22] Existence and Concentration Behavior of Ground State Solutions for a Class of Generalized Quasilinear Schrödinger Equations in ℝN
    Jianhua Chen
    Xianjiu Huang
    Bitao Cheng
    Xianhua Tang
    Acta Mathematica Scientia, 2020, 40 : 1495 - 1524
  • [23] Existence and Concentration of Ground State Solutions for Chern–Simons–Schrödinger System with General Nonlinearity
    Jin-Lan Tan
    Jin-Cai Kang
    Chun-Lei Tang
    Mediterranean Journal of Mathematics, 2023, 20
  • [24] Existence of Ground State Solutions for the Schródinger-Poisson System in R2
    Yuan, Ziqing
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 67 - 87
  • [25] Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Zhang, Youpei
    Applied Mathematics Letters, 2020, 99
  • [26] Existence and nonuniqueness of solutions for a class of asymptotically linear nonperiodic Schrödinger equations
    Dong-Lun Wu
    Fengying Li
    Hongxia Lin
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [27] Existence of a ground-state solution for a quasilinear Schrödinger system
    Zhang, Xue
    Zhang, Jing
    FRONTIERS IN PHYSICS, 2024, 12
  • [28] Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth
    Takafumi Akahori
    Slim Ibrahim
    Hiroaki Kikuchi
    Hayato Nawa
    Selecta Mathematica, 2013, 19 : 545 - 609
  • [29] Convergence of ground state solutions for nonlinear Schrdinger equations on graphs
    Ning Zhang
    Liang Zhao
    ScienceChina(Mathematics), 2018, 61 (08) : 1481 - 1494
  • [30] Convergence of ground state solutions for nonlinear Schrödinger equations on graphs
    Ning Zhang
    Liang Zhao
    Science China Mathematics, 2018, 61 : 1481 - 1494