In this paper, we study the existence of ground state solutions to the following fractional Schrödinger system with linear and nonlinear couplings:
{(−△)su+(λ1+V(x))u+kv=μ1u3+βuv2,in R3,(−△)sv+(λ2+V(x))v+ku=μ2v3+βu2v,in R3,u,v∈Hs(R3),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \textstyle\begin{cases} (-\triangle )^{s}u+(\lambda _{1}+V(x))u+kv=\mu _{1}u^{3}+\beta uv^{2}, \quad \text{in } R^{3},\\ (-\triangle )^{s}v+(\lambda _{2}+V(x))v+ku=\mu _{2}v^{3}+ \beta u^{2}v, \quad \text{in } R^{3},\\ u, v\in H^{s}(R^{3}), \end{cases} $$\end{document} where (−△)s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(-\triangle )^{s}$\end{document} denotes the fractional Laplacian of order s∈(34,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$s\in (\frac{3}{4},1)$\end{document}. Under some assumptions of the potential V(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$V(x)$\end{document} and the linear and nonlinear coupling constants k, β, we prove some results for the existence of ground state solutions for the fractional Laplacian systems by using variational methods.