Limit theorems for general one-dimensional boundary-value problems

被引:0
|
作者
Mikhailets V.A. [1 ]
Chekhanova G.A. [1 ]
机构
[1] Institute of Mathematics of the NAS of Ukraine, 3, Tereshchenkovskaya Str., Kiev 01601, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv
关键词
continuity with respect to parameter; convergence of Green matrices; General boundary-value problem; uniform convergence together with derivatives;
D O I
10.1007/s10958-014-2205-4
中图分类号
学科分类号
摘要
We investigate parameter-dependent general inhomogeneous boundary-value problems for systems of linear differential equations, of order n ∈ N, given on a finite interval. We find sufficient conditions under which the solutions to the problems together with their derivatives up to order n − 1 are continuous in the uniform norm with respect to the parameter. We also present sufficient conditions under which the Green matrices corresponding to these problems converge uniformly in the parameter. © 2014, Springer Science+Business Media New York.
引用
收藏
页码:333 / 342
页数:9
相关论文
共 50 条
  • [1] Limit theorems for one-dimensional boundary-value problems
    T. I. Kodlyuk
    V. A. Mikhailets
    N. V. Reva
    [J]. Ukrainian Mathematical Journal, 2013, 65 : 77 - 90
  • [2] Limit theorems for one-dimensional boundary-value problems
    Kodlyuk, T. I.
    Mikhailets, V. A.
    Reva, N. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) : 77 - 90
  • [3] LIMIT THEOREMS FOR THE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS
    Mikhailets, V. A.
    Pelekhata, O. B.
    Reva, N. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (02) : 243 - 251
  • [4] Limit Theorems for the Solutions of Boundary-Value Problems
    V. A. Mikhailets
    O. B. Pelekhata
    N. V. Reva
    [J]. Ukrainian Mathematical Journal, 2018, 70 : 243 - 251
  • [5] Limit theorems in the theory of multipoint boundary-value problems
    Teplinskii Yu.V.
    Nedokis V.A.
    [J]. Ukrainian Mathematical Journal, 1999, 51 (4) : 577 - 591
  • [6] Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces
    Atlasiuk, O. M.
    Mikhailets, V. A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (10) : 1526 - 1537
  • [7] APPLICATION OF RESOLVENT METHOD TO ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEMS
    MIKHLIN, SG
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1976, (02): : 60 - 67
  • [8] Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces
    O. M. Atlasiuk
    V. A. Mikhailets
    [J]. Ukrainian Mathematical Journal, 2019, 70 : 1526 - 1537
  • [9] Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces
    Kodliuk T.I.
    Mikhailets V.A.
    [J]. Journal of Mathematical Sciences, 2013, 190 (4) : 589 - 599
  • [10] Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces
    Atlasiuk, O. M.
    Mikhailets, V. A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1677 - 1687