Limit theorems for one-dimensional boundary-value problems

被引:0
|
作者
T. I. Kodlyuk
V. A. Mikhailets
N. V. Reva
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
[2] “Kyiv Polytechnic Institute” Ukrainian National Technical University,undefined
来源
关键词
Limit Theorem; Limit Relation; Liouville Operator; Ukrainian National Academy; Linear Ordinary Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the limit with respect to a parameter in the uniform norm for the solutions of general boundary-value problems for systems of linear ordinary differential equations of the first order. A generalization of the Kiguradze theorem (1987) to this class of problems is obtained. The conditions imposed on the asymptotic behavior of the coefficients of systems are weakened as much as possible. Sufficient conditions for the uniform convergence of Green matrices to the Green matrix of the limit boundary-value problem are also established.
引用
收藏
页码:77 / 90
页数:13
相关论文
共 50 条
  • [1] Limit theorems for one-dimensional boundary-value problems
    Kodlyuk, T. I.
    Mikhailets, V. A.
    Reva, N. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) : 77 - 90
  • [2] Limit theorems for general one-dimensional boundary-value problems
    Mikhailets V.A.
    Chekhanova G.A.
    [J]. Journal of Mathematical Sciences, 2015, 204 (3) : 333 - 342
  • [3] LIMIT THEOREMS FOR THE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS
    Mikhailets, V. A.
    Pelekhata, O. B.
    Reva, N. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (02) : 243 - 251
  • [4] Limit Theorems for the Solutions of Boundary-Value Problems
    V. A. Mikhailets
    O. B. Pelekhata
    N. V. Reva
    [J]. Ukrainian Mathematical Journal, 2018, 70 : 243 - 251
  • [5] Limit theorems in the theory of multipoint boundary-value problems
    Teplinskii Yu.V.
    Nedokis V.A.
    [J]. Ukrainian Mathematical Journal, 1999, 51 (4) : 577 - 591
  • [6] Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces
    Atlasiuk, O. M.
    Mikhailets, V. A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (10) : 1526 - 1537
  • [7] APPLICATION OF RESOLVENT METHOD TO ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEMS
    MIKHLIN, SG
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1976, (02): : 60 - 67
  • [8] Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces
    O. M. Atlasiuk
    V. A. Mikhailets
    [J]. Ukrainian Mathematical Journal, 2019, 70 : 1526 - 1537
  • [9] Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces
    Kodliuk T.I.
    Mikhailets V.A.
    [J]. Journal of Mathematical Sciences, 2013, 190 (4) : 589 - 599
  • [10] Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces
    Atlasiuk, O. M.
    Mikhailets, V. A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1677 - 1687