Strichartz estimates via the Schrödinger maximal operator

被引:0
|
作者
Keith M. Rogers
机构
[1] Instituto de Ciencias Matematicas CSIC-UAM-UC3M-UCM,
来源
Mathematische Annalen | 2009年 / 343卷
关键词
Maximal Operator; Oscillatory Integral; Strichartz Estimate; Frequency Support; Bilinear Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e^{it\Delta}}$$\end{document} acting on initial data f in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{H}^s}$$\end{document}. We show that an affirmative answer to a question of Carleson, concerning the sharp range of s for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim_{t\to 0}e^{it\Delta}f(x)=f(x)}$$\end{document} a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in \mathbb {R}^n}$$\end{document}, would imply an affirmative answer to a question of Planchon, concerning the sharp range of q and r for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e^{it\Delta}}$$\end{document} is bounded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_x^q(\mathbb {R}^n,L^r_t(\mathbb {R}))}$$\end{document}. When n  =  2, we unconditionally improve the range for which the mixed norm estimates hold.
引用
收藏
相关论文
共 50 条
  • [31] Lp estimates for Riesz transform and their commutators associated with Schr?dinger type operator
    CHEN Xiao-li
    CHEN Jie-cheng
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2016, 31 (01) : 112 - 126
  • [32] Lp estimates for Riesz transform and their commutators associated with Schrödinger type operator
    Xiao-li Chen
    Jie-cheng Chen
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 112 - 126
  • [33] A note on the Schrödinger maximal function
    J. Bourgain
    [J]. Journal d'Analyse Mathématique, 2016, 130 : 393 - 396
  • [34] Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations
    Zihua Guo
    Yuzhao Wang
    [J]. Journal d'Analyse Mathématique, 2014, 124 : 1 - 38
  • [35] Matrix Schrödinger operator with δ-interactions
    A. S. Kostenko
    M. M. Malamud
    D. D. Natyagailo
    [J]. Mathematical Notes, 2016, 100 : 49 - 65
  • [36] A discrete Schrödinger operator on a graph
    Yu. P. Chuburin
    [J]. Theoretical and Mathematical Physics, 2010, 165 : 1335 - 1347
  • [37] On the spectrum of a vector Schrödinger operator
    R. S. Ismagilov
    A. G. Kostyuchenko
    [J]. Functional Analysis and Its Applications, 2007, 41 : 31 - 41
  • [38] On the spectrum of a vector Schrödinger operator
    R. S. Ismagilov
    A. G. Kostyuchenko
    [J]. Doklady Mathematics, 2006, 74 : 854 - 856
  • [39] A Poisson Formula for the Schrödinger Operator
    Rémi Carles
    Tohru Ozawa
    [J]. Journal of Fourier Analysis and Applications, 2008, 14 : 475 - 483
  • [40] On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
    Yu. P. Chuburin
    [J]. Mathematical Notes, 1997, 62 : 648 - 654