Chatter stability prediction of ball-end milling considering multi-mode regenerations

被引:0
|
作者
Jie Zhang
Chengying Liu
机构
[1] Tsinghua University,Institute of Manufacturing Engineering, Department of Mechanical Engineering
关键词
Chatter; Stability; Ball-end milling; Multi-mode regenerations;
D O I
暂无
中图分类号
学科分类号
摘要
Ball-end milling has been commonly used in the manufacturing of complex surfaces and structures. In order to improve the machining efficiency and ensure the manufacturing quality, chatter has to be avoided. The stability of cylindrical end mills has been well studied by selecting the most flexible dominant mode. This paper models the chatter stability of ball-end milling cutter with multiple modes and solves it in discrete time domain. Firstly, the multiple degree-of freedom (DOF) vibration model of the tool-workpiece system is established in modal coordinates to decouple the delay differential equations (DDEs). Then, to complete the motion equations of ball-end milling cutter, the cutting force model considering regenerative effect is built by evaluating the dynamic thickness at each cutting point along the cutting edge. Finally, the stability lobe diagram (SLD) of ball-end milling is solved by full-discretization method in discrete time domain. The cutting tests carried out on a machining center verify the prediction accuracy and observe chatter phenomenon caused by different dominant modes.
引用
收藏
页码:131 / 142
页数:11
相关论文
共 50 条
  • [11] Multi-axis ball-end milling force prediction model considering the influence of cutting edge
    Kejia Zhuang
    Yan Yang
    Xing Dai
    Jian Weng
    Chengjin Tian
    Zhongmei Gao
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 357 - 371
  • [12] Multi-axis ball-end milling force prediction model considering the influence of cutting edge
    Zhuang, Kejia
    Yang, Yan
    Dai, Xing
    Weng, Jian
    Tian, Chengjin
    Gao, Zhongmei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (1-2): : 357 - 371
  • [13] Multi-axis ball-end milling force prediction model considering the influence of cutting edge
    Zhuang, Kejia
    Yang, Yan
    Dai, Xing
    Weng, Jian
    Tian, Chengjin
    Gao, Zhongmei
    International Journal of Advanced Manufacturing Technology, 2023, 128 (1-2): : 357 - 371
  • [14] Chatter stability prediction of milling considering nonlinearities
    Yang, Yiqing
    Wu, Donghui
    Liu, Qiang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2021, 235 (05) : 862 - 876
  • [15] An updated model of stability prediction in five-axis ball-end milling
    Yuebang Dai
    Hongkun Li
    Jianglei Dong
    Qiang Zhou
    Jianhua Yong
    Shengxian Liu
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 3293 - 3306
  • [16] An updated model of stability prediction in five-axis ball-end milling
    Dai, Yuebang
    Li, Hongkun
    Dong, Jianglei
    Zhou, Qiang
    Yong, Jianhua
    Liu, Shengxian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (9-12): : 3293 - 3306
  • [17] Prediction of surface topomorphy and roughness in ball-end milling
    Antoniadis, A
    Savakis, C
    Bilalis, N
    Balouktsis, A
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2003, 21 (12): : 965 - 971
  • [18] Prediction of Surface Topomorphy and Roughness in Ball-End Milling
    A. Antoniadis
    C. Savakis
    N. Bilalis
    A. Balouktsis
    The International Journal of Advanced Manufacturing Technology, 2003, 21 : 965 - 971
  • [19] Prediction of Surface Topomorphy and Roughness in Ball-End Milling
    Antoniadis, A. (antoniadis@chania.teicrete.gr), 1600, Springer-Verlag London Ltd (21):
  • [20] The prediction of cutting forces in the ball-end milling process
    Tai, CC
    Fuh, KH
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1995, 54 (1-4) : 286 - 301