Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter

被引:0
|
作者
Mikhail Rybakov
Dmitry Shkatov
机构
[1] Tver State University,Department of Mathematics
[2] University of the Witwatersrand,School of Computer Science and Applied Mathematics
[3] Johannesburg,undefined
来源
Studia Logica | 2019年 / 107卷
关键词
First-order intuitionistic logic; First-order modal logic; Undecidability; Two-variable fragment; Monadic fragment;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals [QBL,QKC]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbf{QBL}, \mathbf{QKC}]$$\end{document} and [QBL,QFL]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbf{QBL}, \mathbf{QFL}]$$\end{document}, where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, respectively. We also show that, for most “natural” first-order modal logics, the two-variable fragment with a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable, regardless of whether we consider semantics with expanding or constant domains. These include all sublogics of QKTB, QGL, and QGrz—among them, QK, QT, QKB, QD, QK4, and QS4.
引用
收藏
页码:695 / 717
页数:22
相关论文
共 50 条