Fourier Power Spectra of Solar Noise Storms

被引:0
|
作者
Marian Karlický
Ján Rybák
Christian Monstein
机构
[1] Academy of Sciences of the Czech Republic,Astronomical Institute
[2] Slovak Academy of Sciences,Astronomical Institute
[3] ETH Zurich,Institute for Particle Physics and Astrophysics
来源
Solar Physics | 2018年 / 293卷
关键词
Sun: activity; Sun: radio radiation;
D O I
暂无
中图分类号
学科分类号
摘要
We analyzed three noise storms recorded on 200 – 400 MHz Trieste Callisto radio spectra on 2 July 2012, 8 July 2012, and 16 July 2012 by the Fourier method. We divided intervals of the noise storms into five-minute intervals, and in these intervals we computed the mean Fourier spectra as a function of the wave numbers in the frequency and height-scale spaces. We found that these Fourier spectra, where the spectrum from the quiet-activity interval was subtracted, are power-law spectra. The mean power-law index of these spectra in the range ln(kz)=[1.8,2.9]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ln(k_{z}) = [1.8, 2.9]$\end{document} (where kz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{z}$\end{document} is the wave number in the height-scale space) is −1.7±0.14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.7\pm0.14$\end{document}, −1.6±0.14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.6\pm0.14$\end{document}, and −1.5±0.12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.5 \pm0.12$\end{document} for the 2 July 2012, the 8 July 2012, and the 16 July 2012 noise storms, respectively. It appears that as the number of Type-I bursts in the studied interval increases, the power-law index becomes closer to −5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-5/3$\end{document}; this is known as the Kolmogorov spectral index. The power-law index of the noise storms is very similar to that of the narrowband dm-spikes found in our previous studies. Furthermore, we found a break in the power spectra at ln(kz)≈2.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ln(k_{z}) \approx2.9$\end{document}, and the mean power-law index values above this break are −2.9±0.46\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-2.9\pm0.46$\end{document}, −3.1±0.65\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-3.1\pm0.65$\end{document}, and −3.4±0.98\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-3.4\pm0.98$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Analysis of noise in Fourier transform infrared spectra
    Mark, HL
    Griffiths, PR
    APPLIED SPECTROSCOPY, 2002, 56 (05) : 633 - 639
  • [22] A single picture for solar coronal outflows and radio noise storms
    Del Zanna, G.
    Aulanier, G.
    Klein, K. -L.
    Toeroek, T.
    ASTRONOMY & ASTROPHYSICS, 2011, 526
  • [23] A MECHANISM FOR GENERATING METER-WAVE SOLAR NOISE STORMS
    GENKIN, LG
    ERUKHIMOV, LM
    LEVIN, BN
    SOVIET ASTRONOMY LETTERS, 1989, 15 (01): : 71 - 75
  • [24] FLUCTUATIONS OF TYPE-I SOLAR RADIO NOISE STORMS
    GNEZDILOV, AA
    FOMICHEV, VV
    SOVIET ASTRONOMY LETTERS, 1987, 13 (04): : 297 - 299
  • [25] NOISE STORMS AND THE STRUCTURE OF MICROWAVE EMISSION OF SOLAR ACTIVE REGIONS
    BOGOD, VM
    GARIMOV, V
    GELFREIKH, GB
    LANG, KR
    WILLSON, RF
    KILE, JN
    SOLAR PHYSICS, 1995, 160 (01) : 133 - 149
  • [26] CULGOORA CATALOG OF SOLAR RADIO NOISE STORMS, 1973 TO 1984
    STEWART, RT
    EASON, HMC
    HEISLER, LH
    PROCEEDINGS ASTRONOMICAL SOCIETY OF AUSTRALIA, 1985, 6 (02): : 231 - 271
  • [27] ON THE ORIGIN OF CONTINUUM EMISSION DURING DECAMETRIC SOLAR NOISE STORMS
    LEVIN, BN
    RAPOPORT, VO
    SOLAR PHYSICS, 1985, 96 (02) : 371 - 380
  • [29] POWER SPECTRA OF SOLAR CONVECTION
    CHOU, DY
    LABONTE, BJ
    BRAUN, DC
    DUVALL, TL
    ASTROPHYSICAL JOURNAL, 1991, 372 (01): : 314 - 320
  • [30] Scattering of radio waves and probability distribution of intensity of solar noise storms
    Yu. Yurovsky
    Solar Physics, 2000, 194 : 147 - 150