Fourier Power Spectra of Solar Noise Storms

被引:0
|
作者
Marian Karlický
Ján Rybák
Christian Monstein
机构
[1] Academy of Sciences of the Czech Republic,Astronomical Institute
[2] Slovak Academy of Sciences,Astronomical Institute
[3] ETH Zurich,Institute for Particle Physics and Astrophysics
来源
Solar Physics | 2018年 / 293卷
关键词
Sun: activity; Sun: radio radiation;
D O I
暂无
中图分类号
学科分类号
摘要
We analyzed three noise storms recorded on 200 – 400 MHz Trieste Callisto radio spectra on 2 July 2012, 8 July 2012, and 16 July 2012 by the Fourier method. We divided intervals of the noise storms into five-minute intervals, and in these intervals we computed the mean Fourier spectra as a function of the wave numbers in the frequency and height-scale spaces. We found that these Fourier spectra, where the spectrum from the quiet-activity interval was subtracted, are power-law spectra. The mean power-law index of these spectra in the range ln(kz)=[1.8,2.9]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ln(k_{z}) = [1.8, 2.9]$\end{document} (where kz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{z}$\end{document} is the wave number in the height-scale space) is −1.7±0.14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.7\pm0.14$\end{document}, −1.6±0.14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.6\pm0.14$\end{document}, and −1.5±0.12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-1.5 \pm0.12$\end{document} for the 2 July 2012, the 8 July 2012, and the 16 July 2012 noise storms, respectively. It appears that as the number of Type-I bursts in the studied interval increases, the power-law index becomes closer to −5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-5/3$\end{document}; this is known as the Kolmogorov spectral index. The power-law index of the noise storms is very similar to that of the narrowband dm-spikes found in our previous studies. Furthermore, we found a break in the power spectra at ln(kz)≈2.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ln(k_{z}) \approx2.9$\end{document}, and the mean power-law index values above this break are −2.9±0.46\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-2.9\pm0.46$\end{document}, −3.1±0.65\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-3.1\pm0.65$\end{document}, and −3.4±0.98\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-3.4\pm0.98$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Fourier Power Spectra of Solar Noise Storms
    Karlicky, Marian
    Rybak, Jan
    Monstein, Christian
    SOLAR PHYSICS, 2018, 293 (10)
  • [2] MEASUREMENT OF NOISE POWER SPECTRA BY FOURIER ANALYSIS
    AKCASU, AZ
    JOURNAL OF APPLIED PHYSICS, 1961, 32 (04) : 565 - &
  • [3] The structure of solar radio noise storms
    Mercier, C.
    Subramanian, P.
    Chambe, G.
    Janardhan, P.
    ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [4] SOLAR NOISE STORMS AND PLASMA OSCILLATIONS
    SEN, HK
    ASTRONOMICAL JOURNAL, 1952, 57 (01): : 26 - 27
  • [5] SOLAR NOISE STORMS AND PLASMA OSCILLATIONS
    SEN, HK
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1952, 40 (01): : 108 - 108
  • [6] Spectrum of Fluctuations of Solar Noise Storms
    Y. F. Yurovsky
    Solar Physics, 2007, 246 : 415 - 418
  • [7] STRUCTURE AND MOVEMENT OF SOLAR NOISE STORMS
    DAIGNE, G
    NATURE, 1968, 220 (5167) : 567 - &
  • [8] Spectrum of fluctuations of solar noise storms
    Yurovsky, Y. F.
    SOLAR PHYSICS, 2007, 246 (02) : 415 - 418
  • [9] ON ASSOCIATION BETWEEN NOISE STORMS AND SOLAR FLARES
    SMITH, EVP
    MCINTOSH, PS
    JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (03): : 1013 - +
  • [10] SOLAR NOISE STORMS IN DECAMETRIC WAVELENGTH RANGE
    MOLLERPEDERSEN, B
    ASTRONOMY & ASTROPHYSICS, 1974, 37 (01) : 163 - 168