On Affine Normal Forms and a Classification of Homogeneous Surfaces in Affine Three-Space

被引:0
|
作者
Michael Eastwood
Vladimir Ezhov
机构
[1] University of Adelaide,Department of Pure Mathematics
来源
Geometriae Dedicata | 1999年 / 77卷
关键词
affine; homogeneous; surface; classification; normal form.;
D O I
暂无
中图分类号
学科分类号
摘要
We classify homogeneous surfaces in real and complex affine three-space. This is achieved by choosing affine coordinates so that the surface is defined by a function whose Taylor series is in a preferred normal form.
引用
收藏
页码:11 / 69
页数:58
相关论文
共 50 条
  • [41] On distinguished local coordinates for locally homogeneous affine surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (01): : 65 - 74
  • [42] Affine homogeneous surfaces in ℝ3 with vanishing pick invariant
    B. E. Abdalla
    F. Dillen
    L. Vrancken
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1997, 67 : 105 - 115
  • [43] AN ALGEBRAIC CHARACTERIZATION OF THE AFFINE THREE SPACE
    Dasgupta, Nikhilesh
    Gupta, Neena
    JOURNAL OF COMMUTATIVE ALGEBRA, 2021, 13 (03) : 333 - 345
  • [44] On distinguished local coordinates for locally homogeneous affine surfaces
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    Monatshefte für Mathematik, 2020, 192 : 65 - 74
  • [45] The affine quasi-Einstein Equation for homogeneous surfaces
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    X. Valle-Regueiro
    manuscripta mathematica, 2018, 157 : 279 - 294
  • [46] The affine quasi-Einstein Equation for homogeneous surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    Valle-Regueiro, X.
    MANUSCRIPTA MATHEMATICA, 2018, 157 (1-2) : 279 - 294
  • [47] Affine Killing vector fields on homogeneous surfaces with torsion
    D'Ascanio, D.
    Gilkey, P. B.
    Pisani, P.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (14)
  • [48] CLASSIFICATION OF AFFINE COMPACT COMPLEX ANALYTIC SURFACES
    VITTER, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 525 - &
  • [49] Thomsen surfaces in affine 4-space
    Vrancken, L
    MONATSHEFTE FUR MATHEMATIK, 1996, 122 (03): : 251 - 264
  • [50] Harmonic surfaces in affine 4-space
    Li, JF
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (06) : 763 - 771