Hurwitz–Ran spaces

被引:0
|
作者
Andrea Bianchi
机构
[1] University of Copenhagen,Department of Mathematical Sciences
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Quandle; Partial monoid; Hurwitz space; Ran space; Group actions; Cell decompositions; Homology manifolds; 18F60; 54B15; 55R80;
D O I
暂无
中图分类号
学科分类号
摘要
Given a couple of subspaces Y⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Y}}\subset {\mathcal {X}}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} satisfying some mild conditions (a “nice couple”), and given a PMQ-pair (Q,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {Q}},G)$$\end{document}, consisting of a partially multiplicative quandle (PMQ) Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} and a group G, we introduce a “Hurwitz–Ran” space Hur(X,Y;Q,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur}({\mathcal {X}},{\mathcal {Y}};{\mathcal {Q}},G)$$\end{document}, containing configurations of points in X\Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}\setminus {\mathcal {Y}}$$\end{document} and in Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Y}}$$\end{document} with monodromies in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} and in G, respectively. We further introduce a notion of morphisms between nice couples, and prove that Hurwitz–Ran spaces are functorial both in the nice couple and in the PMQ-group pair. For a locally finite PMQ Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} we prove a homeomorphism between Hur((0,1)2;Q+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$\end{document} and the simplicial Hurwitz space HurΔ(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ^{\Delta }({\mathcal {Q}})$$\end{document}, introduced in previous work of the author: this provides in particular Hur((0,1)2;Q+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$\end{document} with a cell stratification in the spirit of Fox–Neuwirth and Fuchs.
引用
收藏
相关论文
共 50 条
  • [41] Irreducibility of Hurwitz spaces of coverings with one special fiber
    Vetro, F
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (01): : 115 - 127
  • [42] THE IRREDUCIBILITY OF CERTAIN PURE-CYCLE HURWITZ SPACES
    Liu, Fu
    Osserman, Brian
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (06) : 1687 - 1708
  • [43] A new hierarchy of integrable systems associated to Hurwitz spaces
    Kokotov, A.
    Korotkin, D.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 1055 - 1088
  • [44] Lifting results for rational points on Hurwitz moduli spaces
    Anna Cadoret
    Israel Journal of Mathematics, 2008, 164 : 19 - 59
  • [45] A refined Brill–Noether theory over Hurwitz spaces
    Hannah K. Larson
    Inventiones mathematicae, 2021, 224 : 767 - 790
  • [46] Tautological classes on low-degree Hurwitz spaces
    Canning, Samir
    Larson, Hannah
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (01) : 1 - 46
  • [47] Delta-components of Hurwitz spaces: field of definition
    Cau, Orlando
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2016, 144 (02): : 145 - 162
  • [48] Lifting results for rational points on Hurwitz moduli spaces
    Cadoret, Anna
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 164 (01) : 19 - 59
  • [49] FUNCTION-SPACES AND HURWITZ-RADON NUMBERS
    CRABB, MC
    SUTHERLAND, WA
    MATHEMATICA SCANDINAVICA, 1984, 55 (01) : 67 - 90
  • [50] Chow rings of low-degree Hurwitz spaces
    Canning, Samir
    Larson, Hannah
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (789): : 103 - 152