Hurwitz–Ran spaces

被引:0
|
作者
Andrea Bianchi
机构
[1] University of Copenhagen,Department of Mathematical Sciences
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Quandle; Partial monoid; Hurwitz space; Ran space; Group actions; Cell decompositions; Homology manifolds; 18F60; 54B15; 55R80;
D O I
暂无
中图分类号
学科分类号
摘要
Given a couple of subspaces Y⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Y}}\subset {\mathcal {X}}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} satisfying some mild conditions (a “nice couple”), and given a PMQ-pair (Q,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {Q}},G)$$\end{document}, consisting of a partially multiplicative quandle (PMQ) Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} and a group G, we introduce a “Hurwitz–Ran” space Hur(X,Y;Q,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur}({\mathcal {X}},{\mathcal {Y}};{\mathcal {Q}},G)$$\end{document}, containing configurations of points in X\Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}\setminus {\mathcal {Y}}$$\end{document} and in Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Y}}$$\end{document} with monodromies in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} and in G, respectively. We further introduce a notion of morphisms between nice couples, and prove that Hurwitz–Ran spaces are functorial both in the nice couple and in the PMQ-group pair. For a locally finite PMQ Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} we prove a homeomorphism between Hur((0,1)2;Q+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$\end{document} and the simplicial Hurwitz space HurΔ(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ^{\Delta }({\mathcal {Q}})$$\end{document}, introduced in previous work of the author: this provides in particular Hur((0,1)2;Q+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$\end{document} with a cell stratification in the spirit of Fox–Neuwirth and Fuchs.
引用
收藏
相关论文
共 50 条
  • [1] Hurwitz-Ran spaces
    Bianchi, Andrea
    GEOMETRIAE DEDICATA, 2023, 217 (05)
  • [2] Hurwitz spaces
    Natanzon, SM
    TOPICS ON RIEMANN SURFACES AND FUCHSIAN GROUPS, 2001, 287 : 165 - 177
  • [3] Deloopings of Hurwitz spaces
    Bianchi, Andrea
    COMPOSITIO MATHEMATICA, 2024, 160 (07)
  • [4] Compactifications of Hurwitz Spaces
    Deopurkar, Anand
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (14) : 3863 - 3911
  • [5] Moduli spaces of Riemann surfaces as Hurwitz spaces
    Bianchi, Andrea
    ADVANCES IN MATHEMATICS, 2023, 430
  • [6] Syzygy divisors on Hurwitz spaces
    Deopurkar, Anand
    Patel, Anand
    HIGHER GENUS CURVES IN MATHEMATICAL PHYSICS AND ARITHMETIC GEOMETRY, 2018, 703 : 209 - 222
  • [7] Reduction of covers and Hurwitz spaces
    Bouw, II
    Wewers, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 574 : 1 - 49
  • [8] On the Kodaira dimension of Hurwitz spaces
    Gavril Farkas
    Scott Mullane
    Mathematische Zeitschrift, 2022, 300 : 3417 - 3432
  • [9] Towards the homology of Hurwitz spaces
    Diaz, S
    Edidin, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 66 - 98
  • [10] KAHLER GEOMETRY ON HURWITZ SPACES
    Naumann, Philipp
    DOCUMENTA MATHEMATICA, 2018, 23 : 1829 - 1861