Overlapping multigroup approach to a linear extended Boltzmann equation

被引:0
|
作者
W. Koller
A. Rossani
F. Schürrer
G. Spiga
机构
[1] Institut für Theoretische Physik,
[2] Technische Universität Graz,undefined
[3] Petersgasse 16,undefined
[4] A-8010 Graz,undefined
[5] Austria,undefined
[6] Dipartimento di Fisica,undefined
[7] Politecnico di Torino and Istituto Nazionale di Fisica della Materia,undefined
[8] Unità del Politecnico di Torino,undefined
[9] Corso Duca degli Abruzzi 24,undefined
[10] I-10129 Torino,undefined
[11] Italy,undefined
[12] Dipartimento di Matematica,undefined
[13] Università di Parma,undefined
[14] Via M. D'Azeglio 85,undefined
[15] I-43100 Parma,undefined
[16] Italy,undefined
关键词
Key words. Boltzmann equation, extended kinetic theory, multigroup methods.;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a linear Boltzmann equation governing the evolution of charged structureless particles scattering inelastically with heavy field particles. External electric and magnetic fields are accounted for. Conservation of mass as well as balance equations for momentum and energy transfer are discussed in the Lorentz gas limit. A multigroup approximation based on the method of weighted residuals is presented. This approach incorporates external fields in a natural manner. A P1 approximation of the multigroup equations is applied to simple test cases.
引用
收藏
页码:231 / 253
页数:22
相关论文
共 50 条
  • [31] A comparison of the multigroup and collocation methods for solving the low-energy neutron Boltzmann equation
    Clowdsley, MS
    Heinbockel, JH
    Kaneko, H
    Wilson, JW
    Singleterry, RC
    Shinn, JL
    [J]. CANADIAN JOURNAL OF PHYSICS, 2000, 78 (01) : 45 - 56
  • [32] APPROXIMATION OF LINEAR BOLTZMANN EQUATION BY FOKKER-PLANCK EQUATION
    PAWULA, RF
    [J]. PHYSICAL REVIEW, 1967, 162 (01): : 186 - &
  • [33] On the generalized problem of the Boltzmann equation and extended irreversible thermodynamics
    Chen, M
    Daniel, D
    [J]. QUANTUM LIMITS TO THE SECOND LAW, 2002, 643 : 169 - 174
  • [34] A hybrid method for the solution of linear Boltzmann equation
    Picca, Paolo
    Furfaro, Roberto
    [J]. ANNALS OF NUCLEAR ENERGY, 2014, 72 : 214 - 236
  • [35] On solutions to the linear Boltzmann equation for granular gases
    Pettersson, R
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2004, 33 (5-7): : 527 - 543
  • [36] The hydrodynamical limit of the non linear Boltzmann equation
    Bellouquid, A
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 1999, 28 (01): : 57 - 82
  • [37] Optimal spectral theory of the linear Boltzmann equation
    Mokhtar-Kharroubi, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) : 21 - 47
  • [38] Hypocoercivity for the Linear Boltzmann Equation with Confining Forces
    Renjun Duan
    Wei-Xi Li
    [J]. Journal of Statistical Physics, 2012, 148 : 306 - 324
  • [39] A variance reduction approach for Monte Carlo solutions of the non-linear Boltzmann equation
    Baker, Lowell L.
    Hadjiconstantinou, Nicolas G.
    [J]. ICMM 2005, Proceedings of the 3rd International Conference on Microchannels and Minichannels, Pt A, 2005, : 453 - 460
  • [40] Exact linear hydrodynamics from the Boltzmann equation
    Karlin, I. V.
    Colangeli, M.
    Kroeger, M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (21)