Optimal Regularity and Structure of the Free Boundary for Minimizers in Cohesive Zone Models

被引:0
|
作者
L. Caffarelli
F. Cagnetti
A. Figalli
机构
[1] The University of Texas at Austin,Department of Mathematics
[2] University of Sussex,Department of Mathematics
[3] Pevensey 2,Department of Mathematics
[4] ETH Zürich,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study optimal regularity and free boundary for minimizers of an energy functional arising in cohesive zone models for fracture mechanics. Under smoothness assumptions on the boundary conditions and on the fracture energy density, we show that minimizers are C1,1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, 1/2}$$\end{document}, and that near non-degenerate points the fracture set is C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, \alpha }$$\end{document}, for some α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, 1)$$\end{document}.
引用
收藏
页码:299 / 345
页数:46
相关论文
共 50 条
  • [21] Cohesive zone models
    Yuan, Huang
    Besson, Jacques
    ENGINEERING FRACTURE MECHANICS, 2013, 109 : 327 - 327
  • [22] Regularity of Minimizers in the Two-Phase Free Boundary Problems in Orlicz-Sobolev Spaces
    Zheng, Jun
    Feng, Binhua
    Zhao, Peihao
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (01): : 37 - 47
  • [23] Shape derivatives of energy and regularity of minimizers for shallow elastic shells with cohesive cracks
    Shcherbakov, Viktor
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 65
  • [24] Optimal partial regularity of minimizers of quasiconvex variational integrals
    Hamburger, Christoph
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) : 639 - 656
  • [25] OPTIMAL BOUNDARY-REGULARITY FOR MINIMAL-SURFACES WITH A FREE-BOUNDARY
    HILDEBRANDT, S
    NITSCHE, JCC
    MANUSCRIPTA MATHEMATICA, 1981, 33 (3-4) : 357 - 364
  • [26] On optimal regularity of free boundary problems and a conjecture of De Giorgi
    Koch, H
    Leoni, G
    Morini, M
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (08) : 1051 - 1076
  • [27] The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
    Koch, Herbert
    Ruland, Angkana
    Shi, Wenhui
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 845 - 897
  • [28] A boundary regularity result for minimizers of variational integrals with nonstandard growth
    Bulicek, Miroslav
    Maringova, Erika
    Stroffolini, Bianca
    Verde, Anna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 153 - 168
  • [29] Regularity of minimizers for a class of anisotropic free discontinuity problems
    Fusco, N
    Mingione, G
    Trombetti, C
    JOURNAL OF CONVEX ANALYSIS, 2001, 8 (02) : 349 - 367
  • [30] Partial and full boundary regularity for minimizers of functionals with nonquadratic growth
    Duzaar, F
    Grotowski, JF
    Kronz, M
    JOURNAL OF CONVEX ANALYSIS, 2004, 11 (02) : 437 - 476