Existence and multiplicity of positive solutions for a class of fractional differential equations with three-point boundary value conditions

被引:0
|
作者
Bingxian Li
Shurong Sun
Ping Zhao
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
[2] University of Jinan,School of Control Science and Engineering
关键词
fractional differential equations; three-point boundary value problem; existence and multiplicity; fixed point theorem; positive solution; 34A08; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear three-point boundary value problem of fractional differential equations D0+αu(t)+a(t)f(t,u(t))=0,0<t<1,2<α≤3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha}_{0^{+}}u(t)+a(t)f\bigl(t,u(t)\bigr)=0, \quad 0< t< 1, 2< \alpha\leq3, $$\end{document} with boundary conditions u(0)=0,D0+βu(0)=0,D0+βu(1)=bD0+βu(ξ),1≤β≤2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u( \xi),\quad 1\leq\beta\leq2, $$\end{document} involving Riemann-Liouville fractional derivatives D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}_{0^{+}}$\end{document} and D0+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\beta}_{0^{+}}$\end{document}, where a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(t)$\end{document} maybe singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document} or t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=1$\end{document}. We use the Banach contraction mapping principle and the Leggett-Williams fixed point theorem to obtain the existence and uniqueness of positive solutions and the existence of multiple positive solutions. We investigate the above fractional differential equations without many preconditions by the fixed point index theory and obtain the existence of a single positive solution. Some examples are given to show the applicability of our main results.
引用
收藏
相关论文
共 50 条
  • [21] Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions
    Weerawat Sudsutad
    Jessada Tariboon
    [J]. Advances in Difference Equations, 2012
  • [22] Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions
    Sudsutad, Weerawat
    Tariboon, Jessada
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [23] Positive solutions for fractional differential equations with three-point multi-term fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [24] Positive solutions for fractional differential equations with three-point multi-term fractional integral boundary conditions
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    [J]. Advances in Difference Equations, 2014
  • [25] Bifurcation of positive solutions for a three-point boundary-value problem of nonlinear fractional differential equations
    Xiangshan Kong
    Haitao Li
    Shulan Qin
    Hongxin Zhao
    [J]. Journal of Applied Mathematics and Computing, 2017, 54 : 81 - 93
  • [26] Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations
    Peng, Li
    Zhou, Yong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 458 - 466
  • [27] Bifurcation of positive solutions for a three-point boundary-value problem of nonlinear fractional differential equations
    Kong, Xiangshan
    Li, Haitao
    Qin, Shulan
    Zhao, Hongxin
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 81 - 93
  • [28] Existence results for three-point boundary value problems for nonlinear fractional differential equations
    Etemad, Sina
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2105 - 2116
  • [29] Existence and Nonexistence of Positive Solutions for Fractional Three-Point Boundary Value Problems with a Parameter
    Li, Yunhong
    Jiang, Weihua
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [30] Existence and Uniqueness of Positive Solutions for a Singular Fractional Three-Point Boundary Value Problem
    Cabrera, I. J.
    Harjani, J.
    Sadarangani, K. B.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,