Existence and multiplicity of positive solutions for a class of fractional differential equations with three-point boundary value conditions

被引:0
|
作者
Bingxian Li
Shurong Sun
Ping Zhao
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
[2] University of Jinan,School of Control Science and Engineering
关键词
fractional differential equations; three-point boundary value problem; existence and multiplicity; fixed point theorem; positive solution; 34A08; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear three-point boundary value problem of fractional differential equations D0+αu(t)+a(t)f(t,u(t))=0,0<t<1,2<α≤3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha}_{0^{+}}u(t)+a(t)f\bigl(t,u(t)\bigr)=0, \quad 0< t< 1, 2< \alpha\leq3, $$\end{document} with boundary conditions u(0)=0,D0+βu(0)=0,D0+βu(1)=bD0+βu(ξ),1≤β≤2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u( \xi),\quad 1\leq\beta\leq2, $$\end{document} involving Riemann-Liouville fractional derivatives D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}_{0^{+}}$\end{document} and D0+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\beta}_{0^{+}}$\end{document}, where a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(t)$\end{document} maybe singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document} or t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=1$\end{document}. We use the Banach contraction mapping principle and the Leggett-Williams fixed point theorem to obtain the existence and uniqueness of positive solutions and the existence of multiple positive solutions. We investigate the above fractional differential equations without many preconditions by the fixed point index theory and obtain the existence of a single positive solution. Some examples are given to show the applicability of our main results.
引用
收藏
相关论文
共 50 条