How to distinguish between the latently real matrices and the block quaternions?

被引:0
|
作者
Kh. D. Ikramov
机构
[1] Moscow State University,
关键词
Unitary Matrix; Real Matrix; Real Matrice; Generalize Block; Irreducible Matrix;
D O I
10.1007/s10958-012-0783-6
中图分类号
学科分类号
摘要
Let a complex n × n matrix A be unitarily similar to its entrywise conjugate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \bar{A} $\end{document}. If the unitary matrix P in the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \bar{A} = {P^*}AP $\end{document} can be chosen symmetric (skew-symmetric), then A is called a latently real matrix (respectively, a generalized block quaternion). Only these two cases are possible if A is a (unitary) irreducible matrix. The following question is discussed: How to find out whether a given A is a latently real matrix or a generalized block. quaternion? Bibliography: 5 titles.
引用
收藏
页码:779 / 781
页数:2
相关论文
共 50 条