Unitary Matrix;
Real Matrix;
Real Matrice;
Generalize Block;
Irreducible Matrix;
D O I:
10.1007/s10958-012-0783-6
中图分类号:
学科分类号:
摘要:
Let a complex n × n matrix A be unitarily similar to its entrywise conjugate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \bar{A} $\end{document}. If the unitary matrix P in the relation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \bar{A} = {P^*}AP $\end{document} can be chosen symmetric (skew-symmetric), then A is called a latently real matrix (respectively, a generalized block quaternion). Only these two cases are possible if A is a (unitary) irreducible matrix. The following question is discussed: How to find out whether a given A is a latently real matrix or a generalized block. quaternion? Bibliography: 5 titles.
机构:
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, ChinaSchool of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
Yan, Hui-Yin
Huang, Yu-Mei
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, ChinaSchool of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China