Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods

被引:0
|
作者
Claudianor O. Alves
Chao Ji
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
[2] East China University of Science and Technology,School of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the variational methods, we show the existence and multiplicity of multi-peak positive solutions for the following logarithmic Schrödinger equation: {−ϵ2Δu+V(x)u=ulogu2,inℝN,u∈H1(ℝN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{ - \varepsilon{^2}\Delta u + V(x)u = u\log {u^2},} \hfill \;\;\;\;\;\;\;\;\;\; {\rm{in}\,\,{\mathbb{R}^N},} \hfill \cr {u \in {H^1}({\mathbb{R}^N}),} \hfill \;\;\;\;\; {} \hfill \cr} } \right.$$\end{document} where ϵ > 0, N ≥ 2 and V: ℝN → ℝ is a multi-well potential.
引用
收藏
页码:835 / 885
页数:50
相关论文
共 50 条
  • [21] Existence of a positive bound state solution for logarithmic Schrödinger equation
    Feng, Weixun
    Tang, Xianhua
    Zhang, Luyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [22] Multi-bump solutions for logarithmic Schrödinger equations
    Kazunaga Tanaka
    Chengxiang Zhang
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [23] Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelmann category
    Alves, Claudianor O.
    da Silva, Ismael S.
    ANALYSIS AND APPLICATIONS, 2023, 21 (06) : 1477 - 1516
  • [24] Multiplicity of positive solutions of a nonlinear Schrödinger equation
    Yanheng Ding
    Kazunaga Tanaka
    manuscripta mathematica, 2003, 112 : 109 - 135
  • [25] Positive solutions of a Schrödinger equation with critical nonlinearity
    Mónica Clapp
    Yanheng Ding
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 592 - 605
  • [26] Multiple positive solutions for a nonlinear Schrödinger equation
    Th. BartschRID="*"
    Z.-Q. WangRID="*"ID="*"Research supported by NATO grant CRG 970179 and DFG grant Gi 30/68-1
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 366 - 384
  • [27] Single Peak Solutions for a Schr?dinger Equation with Variable Exponent
    Zhong Yuan LIU
    Peng LUO
    Hua Fei XIE
    Acta Mathematica Sinica,English Series, 2023, (11) : 2207 - 2218
  • [28] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [29] Single Peak Solutions for a Schrödinger Equation with Variable Exponent
    Zhong Yuan Liu
    Peng Luo
    Hua Fei Xie
    Acta Mathematica Sinica, English Series, 2023, 39 : 2207 - 2218
  • [30] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    ActaMathematicaScientia, 2020, 40 (01) : 90 - 112