Approximation of positive semidefinite spectral problems

被引:0
|
作者
S. I. Solov’ev
机构
[1] Kazan Federal University,
来源
Differential Equations | 2011年 / 47卷
关键词
Hilbert Space; Bilinear Form; Spectral Problem; Positive Eigenvalue; Grid Method;
D O I
暂无
中图分类号
学科分类号
摘要
A variational positive semidefinite spectral problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We study the convergence and accuracy of the approximate solutions. General results are illustrated by an example dealing with the scheme of the finite-element method with numerical integration for a one-dimensional second-order differential spectral problem.
引用
收藏
页码:1188 / 1196
页数:8
相关论文
共 50 条
  • [41] Approximation of sign-indefinite spectral problems
    Solov'ev, S. I.
    [J]. DIFFERENTIAL EQUATIONS, 2012, 48 (07) : 1028 - 1041
  • [42] Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
    Tropp, Joel A.
    Yurtsever, Alp
    Udell, Madeleine
    Cevher, Volkan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [43] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Mathematical Programming, 2015, 153 : 133 - 177
  • [44] A dual spectral projected gradient method for log-determinant semidefinite problems
    Nakagaki, Takashi
    Fukuda, Mituhiro
    Kim, Sunyoung
    Yamashita, Makoto
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (01) : 33 - 68
  • [45] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [46] A dual spectral projected gradient method for log-determinant semidefinite problems
    Takashi Nakagaki
    Mituhiro Fukuda
    Sunyoung Kim
    Makoto Yamashita
    [J]. Computational Optimization and Applications, 2020, 76 : 33 - 68
  • [47] An improved semidefinite programming hierarchies rounding approximation algorithm for maximum graph bisection problems
    Wu, Chenchen
    Du, Donglei
    Xu, Dachuan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (01) : 53 - 66
  • [48] Approximation bounds for quadratic maximization and max-cut problems with semidefinite programming relaxation
    Xu, Da-chuan
    Zhang, Shu-zhong
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (11): : 1583 - 1596
  • [49] A family of polynomial affine scaling algorithms for positive semidefinite linear complementarity problems
    Jansen, B
    Roos, C
    Terlaky, T
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) : 126 - 140
  • [50] Some properties for the Euclidean distance matrix and positive semidefinite matrix completion problems
    Huang, HX
    Liang, ZA
    Pardalos, PM
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (01) : 3 - 21