GTMNet: a vision transformer with guided transmission map for single remote sensing image dehazing

被引:0
|
作者
Haiqin Li
Yaping Zhang
Jiatao Liu
Yuanjie Ma
机构
[1] Yunnan Normal University,School of Information Science and Technology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Existing dehazing algorithms are not effective for remote sensing images (RSIs) with dense haze, and dehazed results are prone to over-enhancement, color distortion, and artifacts. To tackle these problems, we propose a model GTMNet based on convolutional neural networks (CNNs) and vision transformers (ViTs), combined with dark channel prior (DCP) to achieve good performance. Specifically, a spatial feature transform (SFT) layer is first used to smoothly introduce the guided transmission map (GTM) into the model, improving the ability of the network to estimate haze thickness. A strengthen-operate-subtract (SOS) boosted module is then added to refine the local features of the restored image. The framework of GTMNet is determined by adjusting the input of the SOS boosted module and the position of the SFT layer. On SateHaze1k dataset, we compare GTMNet with several classical dehazing algorithms. The results show that on sub-datasets of Moderate Fog and Thick Fog, the PSNR and SSIM of GTMNet-B are comparable to that of the state-of-the-art model Dehazeformer-L, with only 0.1 times of parameter quantity. In addition, our method is intuitively effective in improving the clarity and the details of dehazed images, which proves the usefulness and significance of using the prior GTM and the SOS boosted module in a single RSI dehazing.
引用
下载
收藏
相关论文
共 50 条
  • [31] Vision Transformers for Single Image Dehazing
    Song, Yuda
    He, Zhuqing
    Qian, Hui
    Du, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1927 - 1941
  • [32] Joint transmission map estimation and image dehazing using dual vision attention network
    Feng Y.-R.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (04): : 854 - 863
  • [33] RSID: A Remote Sensing Image Dehazing Network
    Li, Yuan
    Zhao, Yafeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 3 - 14
  • [34] REVIEW OF VISION TRANSFORMER MODELS FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
    Lv, Pengyuan
    Wu, Wenjun
    Zhong, Yanfei
    Zhang, Liangpei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2231 - 2234
  • [35] Quantitative regularization in robust vision transformer for remote sensing image classification
    Song, Huaxiang
    Yuan, Yuxuan
    Ouyang, Zhiwei
    Yang, Yu
    Xiang, Hui
    PHOTOGRAMMETRIC RECORD, 2024, 39 (186): : 340 - 372
  • [36] Vision Transformer With Contrastive Learning for Remote Sensing Image Scene Classification
    Bi, Meiqiao
    Wang, Minghua
    Li, Zhi
    Hong, Danfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 738 - 749
  • [37] Fast Single Image Dehazing Using Saturation Based Transmission Map Estimation
    Kim, Se Eun
    Park, Tae Hee
    Eom, Il Kyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1985 - 1998
  • [38] Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
    Meng, Lingwu
    Wang, Jing
    Yang, Yang
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 13
  • [40] Memory-Oriented Unpaired Learning for Single Remote Sensing Image Dehazing
    Chen, Xiang
    Huang, Yufeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19