An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow

被引:0
|
作者
Tomás P. Barrios
Rommel Bustinza
机构
[1] Universidad Católica de la Santísima Concepción,Departamento de Matemática y Física Aplicadas
[2] Universidad de Concepción,CI2MA and Departamento de Ingenierí a Matemática, Facultad de Ciencias Físicas y Matemáticas
来源
Numerische Mathematik | 2012年 / 120卷
关键词
Discontinuous Galerkin; Augmented formulation; A posteriori error estimates; 65N30; 65N12; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop an a posteriori error analysis for an augmented discontinuous Garlerkin formulation applied to the Darcy flow. More precisely, we derive a reliable and efficient a posteriori error estimator, which consists of residual terms. Finally, we present several numerical experiments, showing the robustness of the method and the theoretical properties of the estimator, thus confirming the capability of the corresponding adaptive algorithms to localize the inner layers, the singularities and/or the large stress regions of the exact solution.
引用
收藏
页码:231 / 269
页数:38
相关论文
共 50 条
  • [41] A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
    Yuping Zeng
    Feng Wang
    [J]. Applications of Mathematics, 2017, 62 : 243 - 267
  • [42] A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems
    Larson, MG
    Barth, TJ
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 363 - 368
  • [43] A POSTERIORI ERROR ESTIMATES FOR A DISCONTINUOUS GALERKIN APPROXIMATION OF STEKLOV EIGENVALUE PROBLEMS
    Zeng, Yuping
    Wang, Feng
    [J]. APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 243 - 267
  • [44] A POSTERIORI ERROR CONTROL OF DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC OBSTACLE PROBLEMS
    Gudi, Thirupathi
    Porwal, Kamana
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 579 - 602
  • [45] Functional A Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
    Lazarov, Raytcho
    Repin, Sergey
    Tomar, Satyendra K.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 952 - 971
  • [46] POINTWISE A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS
    Demlow, Alan
    Georgoulis, Emmanuil H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2159 - 2181
  • [47] AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Braess, D.
    Fraunholz, T.
    Hoppe, R. H. W.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2121 - 2136
  • [48] A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 351 - 358
  • [49] A NEW A POSTERIORI ERROR ESTIMATE FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Yang, Wei
    Cao, Luling
    Huang, Yunqing
    Cui, Jintao
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (02) : 210 - 224
  • [50] A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS ON POLYGONAL AND POLYHEDRAL MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2352 - 2380