Phase Transition Model for Traffic at a Junction

被引:0
|
作者
Colombo R.M. [1 ]
Garavello M. [2 ]
机构
[1] Dipartimento di Matematica, Università di Brescia, Brescia
[2] Dipartimento di Matematica e Applicazioni, Università di Milano, Milano
关键词
Weak Solution; Riemann Problem; Telecommunication Network; Riemann Solver; Fundamental Diagram;
D O I
10.1007/s10958-013-1631-z
中图分类号
学科分类号
摘要
Consider a junction with n incoming and m outgoing roads. Along each road, the flow of traffic is described through the continuum model displaying phase transitions introduced by R. M. Colombo (2002). This note provides a Riemann solver for the resulting Riemann problem at the junction. © 2013, Springer Science+Business Media New York.
引用
收藏
页码:30 / 36
页数:6
相关论文
共 50 条
  • [41] Traffic State Identification Based on Phase Transition
    Feng, Shumin
    Xin, Mengwei
    Han, Xishuang
    Sun, Yali
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2946 - 2958
  • [42] On the characteristics of phase transition in CA traffic models
    Guo Si-Ling
    Wei Yan-Fang
    Xue Yu
    ACTA PHYSICA SINICA, 2006, 55 (07) : 3336 - 3342
  • [43] Routing strategies in traffic network and phase transition in network traffic flow
    Bing-Hong Wang
    Wen-Xu Wamg
    Pramana, 2008, 71
  • [44] Dissipative phase transition in single small Josephson junction with normal tunneling junction
    Yagi, R
    Kobayashi, S
    Ootuka, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (04) : 1075 - 1077
  • [45] Routing strategies in traffic network and phase transition in network traffic flow
    Wang, Bing-Hong
    Wang, Wen-Xu
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 353 - 358
  • [46] Signatures of a topological phase transition in a planar Josephson junction
    Banerjee, A.
    Lesser, O.
    Rahman, M. A.
    Wang, H. -R.
    Li, M. -R.
    Kringhoj, A.
    Whiticar, A. M.
    Drachmann, A. C. C.
    Thomas, C.
    Wang, T.
    Manfra, M. J.
    Berg, E.
    Oreg, Y.
    Stern, Ady
    Marcus, C. M.
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [47] On a phase transition model
    Jaeyoung Byeon
    Paul H. Rabinowitz
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 1 - 23
  • [48] On a phase transition model
    Byeon, Jaeyoung
    Rabinowitz, Paul H.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (1-2) : 1 - 23
  • [49] Phase transition in a four-direction traffic flow model on a two-dimensional network
    Honda, Y
    Horiguchi, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (138): : 582 - 583
  • [50] Phase transition model of non-stationary traffic flow: Definition, properties and solution method
    Blandin, Sebastien
    Argote, Juan
    Bayen, Alexandre M.
    Work, Daniel B.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2013, 52 : 31 - 55