On generalised subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
S. F. Kamornikov
V. N. Tyutyanov
机构
[1] Departament de Matemàtiques,Department of Mathematics
[2] Francisk Skorina State Gomel University,undefined
[3] Gomel Branch of International University “MITSO”,undefined
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Finite group; K-; -subnormal; Factorised group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
All groups considered are finite. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a formation. A subgroup H of a group G is called K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in G if there exists a chain of subgroups H=H0⊆H1⊆⋯⊆Hn=G,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{n}=G, \end{aligned}$$\end{document}with Hi-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i-1}$$\end{document} normal in Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i}$$\end{document} or Hi/CoreHi(Hi-1)∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i}/{{\,\mathrm{Core}\,}}_{H_{i}}(H_{i-1}) \in \mathcal {F}$$\end{document} for every 1≤i≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i \le n$$\end{document}. If F=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}= \mathcal {N}$$\end{document}, the formation of all nilpotent groups, the K-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-subnormal subgroups of a group G are exactly the subnormal subgroups of G. The aim of this paper is to prove the following theorem: if F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a subgroup-closed saturated lattice formation, then a subgroup H of a group G is K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in G if and only if H is K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in <H,x>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<H,x>$$\end{document} for all x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in G$$\end{document}. Some earlier results are consequence of this theorem.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [21] Finite groups with subgroups supersoluble or subnormal
    Ballester-Bolinchesa, A.
    Cossey, John
    JOURNAL OF ALGEBRA, 2009, 321 (07) : 2042 - 2052
  • [22] Finite groups with subnormal Schmidt subgroups
    V. A. Vedernikov
    Algebra and Logic, 2007, 46 : 363 - 372
  • [23] On ?-subnormal subgroups and products of finite groups
    Heliel, A. A.
    Ballester-Bolinches, A.
    Al-Shomrani, M. M.
    Al-Obidy, R. A.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 770 - 775
  • [24] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF SURGICAL ONCOLOGY, 2023, : 595 - 610
  • [25] On 𝜎-Subnormal Subgroups of Finite 3'-Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    Ukrainian Mathematical Journal, 2020, 72 : 935 - 941
  • [26] Finite Groups with ℙ-Subnormal Sylow Subgroups
    V. N. Kniahina
    V. S. Monakhov
    Ukrainian Mathematical Journal, 2021, 72 : 1571 - 1578
  • [27] Finite Groups with Subnormal Schmidt Subgroups
    V. N. Knyagina
    V. S. Monakhov
    Siberian Mathematical Journal, 2004, 45 : 1075 - 1079
  • [28] Finite groups with subnormal Schmidt subgroups
    Knyagina, VN
    Monakhov, VS
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) : 1075 - 1079
  • [29] Residually finite groups with all subgroups subnormal
    Smith, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 679 - 680
  • [30] On K-a"™-subnormal subgroups of finite groups
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 471 - 480