On the Ill-Posed Character of the Lorentz Integral Transform

被引:0
|
作者
W. Glöckle
M. Schwamb
机构
[1] Ruhr Universität Bochum,Institut für theoretische Physik II
[2] Johannes Gutenberg-Universität,Institut für Kernphysik
来源
Few-Body Systems | 2009年 / 46卷
关键词
Fourier Transform; Numerical Error; Inverse Fourier Transform; Inversion Formula; Integral Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
An exact inversion formula for the Lorentz integral transform (LIT) is provided together with the spectrum of the LIT kernel. The exponential increase of the inverse Fourier transform of the LIT kernel entering the inversion formula explains the ill-posed character of the LIT approach. Also the continuous spectrum of the LIT kernel, which approaches zero points necessarily to the same defect. A possible cure is discussed and numerically illustrated.
引用
下载
收藏
页码:55 / 62
页数:7
相关论文
共 50 条
  • [41] Solutions of An Ill-Posed Stefan Problem
    Panov E.Y.
    Journal of Mathematical Sciences, 2023, 274 (4) : 534 - 543
  • [42] RESONANCE ILL-POSED PROBLEMS AND THEIR REGULARIZATION
    MASLOV, VP
    DIFFERENTIAL EQUATIONS, 1993, 29 (03) : 373 - 383
  • [43] Ill-posed problems of physical electronics
    Korolev, Sergy V.
    25TH INTERNATIONAL SYMPOSIUM ON DISCHARGES AND ELECTRICAL INSULATION IN VACUUM (ISDEIV 2012), 2012, : 401 - 402
  • [44] Solution of ill-posed problems with Chebfun
    A. Alqahtani
    T. Mach
    L. Reichel
    Numerical Algorithms, 2023, 92 : 2341 - 2364
  • [45] ILL-POSED PROBLEMS OF RADIATION TOMOGRAPHY
    Anikonov, D. S.
    Lavrent'ev, M. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C73 - C80
  • [46] MULTILEVEL ALGORITHMS FOR ILL-POSED PROBLEMS
    KING, JT
    NUMERISCHE MATHEMATIK, 1992, 61 (03) : 311 - 334
  • [47] Stochastic methods for ill-posed problems
    Burrage, K
    Piskarev, S
    BIT, 2000, 40 (02): : 226 - 240
  • [48] A comparison of regularizations for an ill-posed problem
    Ames, KA
    Clark, GW
    Epperson, JF
    Oppenheimer, SF
    MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1451 - 1471
  • [49] Solutions of Ill-Posed Linear Equations
    Peng, Yamian
    Chang, Jincai
    Yan, Yan
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 536 - 545
  • [50] WHAT IS THE COMPLEXITY OF ILL-POSED PROBLEMS
    WERSCHULZ, AG
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (9-10) : 945 - 967