Diffusion Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims

被引:0
|
作者
Zailei Cheng
Youngsoo Seol
机构
[1] Florida State University,Department of Mathematics
[2] Dong-A University,Department of Mathematics
来源
Methodology and Computing in Applied Probability | 2020年 / 22卷
关键词
Diffusion approximation; Risk process; Finite-horizon ruin probability; Hawkes processes; Primary 91B30; Secondary 60F17, 60G55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a classical risk process with arrival of claims following a non-stationary Hawkes process. We study the asymptotic regime when the premium rate and the baseline intensity of the claims arrival process are large, and claim size is small. The main goal of the article is to establish a diffusion approximation by verifying a functional central limit theorem and to compute the ruin probability in finite-time horizon. Numerical results will also be given.
引用
收藏
页码:555 / 571
页数:16
相关论文
共 50 条
  • [31] A non-homogeneous, non-stationary and path-dependent Markov anomalous diffusion model
    Barraza, Nestor R.
    Pena, Gabriel
    Gambini, Juliana
    Carusela, M. Florencia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (09)
  • [32] ANALOG SIMULATION OF DIFFUSION PROBLEMS IN A NON-STATIONARY SYSTEM
    GEERAERT, B
    INDUSTRIE CHIMIQUE BELGE-BELGISCHE CHEMISCHE INDUSTRIE, 1969, 34 (06): : 531 - &
  • [33] Approximation of MTTF calculation of a non-stationary gamma wear process
    Verma A.K.
    Srividya A.
    Rana A.
    International Journal of System Assurance Engineering and Management, 2011, 2 (04) : 282 - 285
  • [34] Memory Efficient Kernel Approximation for Non-Stationary and Indefinite Kernels
    Heilig, Simon
    Muench, Maximilian
    Schleif, Frank-Michael
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [36] A reliability approximation for structures subjected to non-stationary random excitation
    He, Jun
    STRUCTURAL SAFETY, 2009, 31 (04) : 268 - 274
  • [37] First-approximation instability criteria for non-stationary linearizations
    Leonov, GA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2004, 68 (06): : 827 - 838
  • [38] Non-stationary non-parametric volatility model
    Han, Heejoon
    Zhang, Shen
    ECONOMETRICS JOURNAL, 2012, 15 (02): : 204 - 225
  • [39] A CONVEXITY RESULT FOR SINGLE-SERVER EXPONENTIAL LOSS SYSTEMS WITH NON-STATIONARY ARRIVALS
    SVORONOS, A
    GREEN, L
    JOURNAL OF APPLIED PROBABILITY, 1988, 25 (01) : 224 - 227
  • [40] NON-STATIONARY MODEL OF MECHANICAL DIFFUSION FOR HALF-SPACE WITH ARBITRARY BOUNDARY CONDITIONS
    Davydov, S. A.
    Zemskov, A. V.
    Igumnov, L. A.
    Tarlakovskii, D. V.
    MATERIALS PHYSICS AND MECHANICS, 2016, 28 (1-2): : 72 - 76