Lifetime of coexisting sub-10 nm zero-field skyrmions and antiskyrmions

被引:0
|
作者
Moritz A. Goerzen
Stephan von Malottki
Sebastian Meyer
Pavel F. Bessarab
Stefan Heinze
机构
[1] University of Kiel,Institute of Theoretical Physics and Astrophysics
[2] University of Iceland,Science Institute
[3] Dartmouth College,Thayer School of Engineering
[4] Nanomat/Q-mat/CESAM Université de Liège,Department of Physics and Electrical Engineering
[5] Linnaeus University,Kiel Nano, Surface, and Interface Science (KiNSIS)
[6] University of Kiel,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic skyrmions have raised high hopes for future spintronic devices. For many applications, it would be of great advantage to have more than one metastable particle-like texture available. The coexistence of skyrmions and antiskyrmions has been proposed in inversion-symmetric magnets with exchange frustration. However, so far only model systems have been studied and the lifetime of coexisting metastable topological spin structures has not been obtained. Here, we predict that skyrmions and antiskyrmions with diameters below 10 nm can coexist at zero magnetic field in a Rh/Co bilayer on the Ir(111) surface—an experimentally feasible system. We show that the lifetimes of metastable skyrmions and antiskyrmions in the ferromagnetic ground state are above one hour for temperatures up to 75 and 48 K, respectively. The entropic contribution to the nucleation and annihilation rates differs for skyrmions and antiskyrmions. This opens the route to the thermally activated creation of coexisting skyrmions and antiskyrmions in frustrated magnets with Dzyaloshinskii–Moriya interaction.
引用
收藏
相关论文
共 50 条
  • [21] Sub-10 nm fabrication: methods and applications
    Yiqin Chen
    Zhiwen Shu
    Shi Zhang
    Pei Zeng
    Huikang Liang
    Mengjie Zheng
    Huigao Duan
    International Journal of Extreme Manufacturing, 2021, 3 (03) : 20 - 50
  • [22] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Luisier, Mathieu
    Han, Shu-Jen
    Tulevski, George
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    NANO LETTERS, 2012, 12 (02) : 758 - 762
  • [23] Sub-10 nm imprint lithography and applications
    Chou, SY
    Krauss, PR
    Zhang, W
    Guo, LJ
    Zhuang, L
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2897 - 2904
  • [24] Fluorescence nanoscopy at the sub-10 nm scale
    Masullo, Luciano A.
    Szalai, Alan M.
    Lopez, Lucia F.
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1101 - 1112
  • [25] CMOS downsizing toward sub-10 nm
    Iwai, H
    SOLID-STATE ELECTRONICS, 2004, 48 (04) : 497 - 503
  • [26] Sub-10 nm fabrication: methods and applications
    Chen, Yiqin
    Shu, Zhiwen
    Zhang, Shi
    Zeng, Pei
    Liang, Huikang
    Zheng, Mengjie
    Duan, Huigao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2021, 3 (03)
  • [27] Capillary filling of sub-10 nm nanochannels
    Haneveld, Jeroen
    Tas, Niels R.
    Brunets, Nataliya
    Jansen, Henri V.
    Elwenspoek, Miko
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [28] Growth of sub-10 nm fluorescent nanodiamonds
    Alzahrani, Yahya A.
    Alkahtani, Masfer H.
    OPTICAL MATERIALS EXPRESS, 2023, 13 (08) : 2192 - 2202
  • [29] Apertureless scanning near field optical microscope with sub-10 nm resolution
    Bek, A
    Vogelgesang, R
    Kern, K
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04):
  • [30] Fluorescence near-field microscopy of DNA at sub-10 nm resolution
    Ma, Ziyang
    Gerton, Jordan M.
    Wade, Lawrence A.
    Quake, Stephen R.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)