The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions

被引:0
|
作者
Andrey G. Grozin
Johannes M. Henn
Gregory P. Korchemsky
Peter Marquard
机构
[1] Budker Institute of Nuclear Physics SB RAS,PRISMA Cluster of Excellence
[2] Novosibirsk State University,undefined
[3] Johannes Gutenberg University,undefined
[4] Institut de Physique Théorique,undefined
[5] Unité Mixte de Recherche 3681 du CNRS,undefined
[6] CEA Saclay,undefined
[7] Deutsches Elektronen-Synchrotron,undefined
[8] DESY,undefined
关键词
Wilson; ’t Hooft and Polyakov loops; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. The three-loop result in the latter theory is new and confirms a conjecture made in our previous paper. We study various physical limits of the cusp anomalous dimension and discuss its relation to the quark-antiquark potential including the effects of broken conformal symmetry in QCD. We find that the cusp anomalous dimension viewed as a function of the cusp angle and the new effective coupling given by light-like cusp anomalous dimension reveals a remarkable universality property — it takes the same form in QCD and its supersymmetric extensions, to three loops at least. We exploit this universality property and make use of the known result for the three-loop quark-antiquark potential to predict the special class of nonplanar corrections to the cusp anomalous dimensions at four loops. Finally, we also discuss in detail the computation of all necessary Wilson line integrals up to three loops using the method of leading singularities and differential equations.
引用
收藏
相关论文
共 50 条
  • [31] The four loop QCD rapidity anomalous dimension
    Moult, Ian
    Zhu, Hua Xing
    Zhu, Yu Jiao
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [32] Four-loop cusp anomalous dimension in QED
    Andrey Grozin
    Journal of High Energy Physics, 2018
  • [33] The four loop QCD rapidity anomalous dimension
    Ian Moult
    Hua Xing Zhu
    Yu Jiao Zhu
    Journal of High Energy Physics, 2022
  • [34] The cusp anomalous dimension at three loops and beyond
    Correa, Diego
    Henn, Johannes
    Maldacena, Juan
    Sever, Amit
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [35] The cusp anomalous dimension at three loops and beyond
    Diego Correa
    Johannes Henn
    Juan Maldacena
    Amit Sever
    Journal of High Energy Physics, 2012
  • [36] Four-loop cusp anomalous dimension in QED
    Grozin, Andrey
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [37] Three-loop static QCD potential in heavy quarkonia
    Santia, Marco D.
    Repko, Wayne W.
    Radford, Stanley F.
    NUCLEAR PHYSICS A, 2014, 924 : 65 - 73
  • [38] The three-loop splitting functions in QCD: the singlet case
    Vogt, A
    Moch, S
    Vermaseren, JAM
    NUCLEAR PHYSICS B, 2004, 691 (1-2) : 129 - 181
  • [39] Improved approximations for the three-loop splitting functions in QCD
    van Neerven, WL
    Vogt, A
    PHYSICS LETTERS B, 2000, 490 (1-2) : 111 - 118
  • [40] The three-loop anomalous dimension and the four-loop β-function for N=1 SQED regularized by higher derivatives
    Shirokov, I. E.
    Stepanyantz, K., V
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (04):