Wavefront Curvature Sensing Based on Diffraction Grating and Fractional Fourier Transforms

被引:0
|
作者
Banghe Zhu
Akira Shirakawa
Mitsuru Musha
Ken-ichi Ueda
Kevin D. Cole
机构
[1] University of Electro-communications,Institute for Laser Science
[2] University of Nebraska-Lincoln,Dept. of Mechanical Engineering, N104 Walter Scott Engineering Center
来源
Optical Review | 2004年 / 11卷
关键词
adaptive optics; diffraction and gratings; optical sensing; fractional Fourier transforms;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new concept for wavefront curvature sensing, which is based on diffraction grating and fractional Fourier transforms systems. An explicit formula is derived expressing the wavefront curvature, and the wavefront shape can also be retrieved rapidly. The experimental setup is presented and numerical simulations show the validity of the proposed method.
引用
收藏
页码:344 / 347
页数:3
相关论文
共 50 条
  • [31] Fractional Fourier transforms in two dimensions
    Simon, R
    Wolf, KB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2368 - 2381
  • [32] Fractional Fourier Transforms and Geometrical Optics
    Moreno, Ignacio
    Ferreira, Carlos
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 161, 2010, 161 : 89 - 146
  • [33] ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS
    MCBRIDE, AC
    KERR, FH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) : 159 - 175
  • [34] Discrete fractional Hartley and Fourier transforms
    Pei, SC
    Tseng, CC
    Yeh, MH
    Shyu, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06): : 665 - 675
  • [35] Frequency analysis of wavefront curvature sensing: optimum propagation distance and multi-z wavefront curvature sensing
    Xi Fengjie
    Jiang Zongfu
    Xu Xiaojun
    Hou Jing
    Liu Zejin
    OPTICS EXPRESS, 2009, 17 (05): : 3707 - 3715
  • [36] Wavelet-fractional Fourier transforms
    Yuan Lin
    CHINESE PHYSICS B, 2008, 17 (01) : 170 - 179
  • [37] Fractional Fourier transforms of hypercomplex signals
    De Bie, Hendrik
    De Schepper, Nele
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 381 - 388
  • [38] Fractional fourier transforms and geometrical optics
    Moreno I.
    Ferreira C.
    Advances in Imaging and Electron Physics, 2010, 161 (0C) : 90 - 146
  • [39] Fast algorithms for fractional Fourier transforms
    Creutzburg, R
    Rundblad, E
    Labunets, VG
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 383 - 387
  • [40] A fast algorithm for fractional Fourier transforms
    Deng, XG
    Li, YP
    Fan, DY
    Qiu, Y
    OPTICS COMMUNICATIONS, 1997, 138 (4-6) : 270 - 274