Some negacyclic BCH codes and quantum codes

被引:2
|
作者
Junli Wang
Ruihu Li
Yang Liu
Guanmin Guo
机构
[1] Air Force Engineering University,Department of Basic Sciences
来源
关键词
Negacyclic code; Cyclotomic coset; Quantum code; Hermitian dual containing code;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate narrow-sense and non-narrow-sense negacyclic Bose–Chaudhuri–Hocquenghem (NBCH) codes of length n=qm-1a(qm+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^m-1}{a}(q^m+1)$$\end{document} over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} closely, where q is an odd prime power, m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3$$\end{document} is an odd integer and a∣(qm-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\mid (q^m-1)$$\end{document} is an even integer. To derive accurate maximum designed distance of Hermitian dual containing NBCH codes, we define 2≤a≤2q2-q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le a\le 2q^2-q-1$$\end{document} for narrow-sense codes with δm,aN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^N$$\end{document} and 2≤a<2(q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le a< 2(q-1)$$\end{document} for non-narrow-sense codes with δm,aNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^{NN}$$\end{document}. For given a, our maximum designed distance improves over the distance δmA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _m^A$$\end{document} of Aly et al. (IEEE Trans Inf Theory 53:1183–1188, 2007) to a great extent, that is, δm,aN=δm,aNN=a+22δmA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^{N}=\delta _{m, a}^{NN}=\frac{a+2}{2}\delta _m^A$$\end{document}. After determining dimensions of such Hermitian dual containing NBCH codes, we construct many new quantum codes via Hermitian construction naturally, whose parameters are better than the ones in the literature.
引用
收藏
相关论文
共 50 条
  • [31] New quantum stabilizer codes with better parameters from the images of some RS codes and BCH codes
    Wang, Xueting
    Yan, Tongjiang
    Sun, Yuhua
    Wang, Tao
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [32] New quantum stabilizer codes with better parameters from the images of some RS codes and BCH codes
    Xueting Wang
    Tongjiang Yan
    Yuhua Sun
    Tao Wang
    Quantum Information Processing, 22
  • [33] On quantum and classical BCH codes
    Aly, Salah A.
    Klappenecker, Andreas
    Sarvepalli, Pradeep Kiran
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) : 1183 - 1188
  • [34] Quantum convolutional BCH codes
    Aly, Salah A.
    Grassl, Markus
    Klappenecker, Andreas
    Roetteler, Martin
    Sarvepalli, Pradeep Kiran
    2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, : 180 - 183
  • [35] Quantum MDS codes from BCH constacyclic codes
    Liqin Hu
    Qin Yue
    Xianmang He
    Quantum Information Processing, 2018, 17
  • [36] Quantum MDS codes from BCH constacyclic codes
    Hu, Liqin
    Yue, Qin
    He, Xianmang
    QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [37] Asymmetric Quantum BCH Codes
    Aly, Salah A.
    ICCES: 2008 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS, 2007, : 157 - 162
  • [38] Two Families of BCH Codes and New Quantum Codes
    Wang, Junli
    Li, Ruihu
    Liu, Yang
    Guo, Guanmin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (07) : 2293 - 2302
  • [39] A class of constacyclic BCH codes and new quantum codes
    Yang liu
    Ruihu Li
    Liangdong Lv
    Yuena Ma
    Quantum Information Processing, 2017, 16
  • [40] Two families of BCH codes and new quantum codes
    Hao Song
    Ruihu Li
    Junli Wang
    Yang Liu
    Quantum Information Processing, 2018, 17