Some negacyclic BCH codes and quantum codes

被引:2
|
作者
Junli Wang
Ruihu Li
Yang Liu
Guanmin Guo
机构
[1] Air Force Engineering University,Department of Basic Sciences
来源
关键词
Negacyclic code; Cyclotomic coset; Quantum code; Hermitian dual containing code;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate narrow-sense and non-narrow-sense negacyclic Bose–Chaudhuri–Hocquenghem (NBCH) codes of length n=qm-1a(qm+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^m-1}{a}(q^m+1)$$\end{document} over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} closely, where q is an odd prime power, m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3$$\end{document} is an odd integer and a∣(qm-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\mid (q^m-1)$$\end{document} is an even integer. To derive accurate maximum designed distance of Hermitian dual containing NBCH codes, we define 2≤a≤2q2-q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le a\le 2q^2-q-1$$\end{document} for narrow-sense codes with δm,aN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^N$$\end{document} and 2≤a<2(q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le a< 2(q-1)$$\end{document} for non-narrow-sense codes with δm,aNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^{NN}$$\end{document}. For given a, our maximum designed distance improves over the distance δmA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _m^A$$\end{document} of Aly et al. (IEEE Trans Inf Theory 53:1183–1188, 2007) to a great extent, that is, δm,aN=δm,aNN=a+22δmA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{m, a}^{N}=\delta _{m, a}^{NN}=\frac{a+2}{2}\delta _m^A$$\end{document}. After determining dimensions of such Hermitian dual containing NBCH codes, we construct many new quantum codes via Hermitian construction naturally, whose parameters are better than the ones in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Some negacyclic BCH codes and quantum codes
    Wang, Junli
    Li, Ruihu
    Liu, Yang
    Guo, Guanmin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
  • [2] Construction of quantum negacyclic BCH codes
    Kai, Xiaoshan
    Li, Ping
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (07)
  • [3] A class of negacyclic BCH codes and its application to quantum codes
    Zhu, Shixin
    Sun, Zhonghua
    Li, Ping
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) : 2139 - 2165
  • [4] A class of negacyclic BCH codes and its application to quantum codes
    Shixin Zhu
    Zhonghua Sun
    Ping Li
    Designs, Codes and Cryptography, 2018, 86 : 2139 - 2165
  • [5] Entanglement-Assisted Quantum Negacyclic BCH Codes
    Chen, Xiaojing
    Zhu, Shixin
    Kai, Xiaoshan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (05) : 1509 - 1523
  • [6] Entanglement-Assisted Quantum Negacyclic BCH Codes
    Xiaojing Chen
    Shixin Zhu
    Xiaoshan Kai
    International Journal of Theoretical Physics, 2019, 58 : 1509 - 1523
  • [7] Two families of negacyclic BCH codes
    Wang, Xiaoqiang
    Sun, Zhonghua
    Ding, Cunsheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2395 - 2420
  • [8] Two families of negacyclic BCH codes
    Xiaoqiang Wang
    Zhonghua Sun
    Cunsheng Ding
    Designs, Codes and Cryptography, 2023, 91 : 2395 - 2420
  • [9] Some Nonprimitive BCH Codes and Related Quantum Codes
    Liu, Yang
    Li, Ruihu
    Guo, Guanmin
    Wang, Junli
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7829 - 7839
  • [10] Quantum negacyclic codes
    Kai, Xiaoshan
    Zhu, Shixin
    Tang, Yongsheng
    PHYSICAL REVIEW A, 2013, 88 (01):