An Orthonormal System of Modified Spherical Harmonics

被引:0
|
作者
Heinz Leutwiler
机构
[1] University of Erlangen-Nuremberg,Mathematical Institute
来源
Complex Analysis and Operator Theory | 2017年 / 11卷
关键词
Spherical harmonics; Generalized axially symmetric potentials; Generalized function theory; Laplace–Beltrami operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
The motivation for the theory of modified spherical harmonics is the desire to find a class of real functions on the half-sphere S+=(x,y,t):x2+y2+t2=1,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}=\left\{ (x,y,t): x^2 + y^2 + t^2 =1,\right. \left. t > 0 \right\} $$\end{document} in R3={(x,y,t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3 = \{(x,y,t)\}$$\end{document} which is naturally adapted to S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document} in the sense that it behaves like the classical spherical harmonics on the full unit sphere. Such a system is at hand if we replace the Laplace equation Δh=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta h =0$$\end{document} by the equation tΔv+∂v∂t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\Delta v+\frac{\partial v}{\partial t}=0$$\end{document} and consider the restrictions of the polynomial solutions v=v(x,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=v(x,y,t)$$\end{document} to the half-sphere S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. Elements of this class of functions are called “modified spherical harmonics”. In order to get similar results as in case of the classical spherical harmonics one has however to replace the Euclidean scalar product on the unit sphere in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} by a non-Euclidean one defined on S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. All this has already been worked out in an earlier paper entitled “Modified Spherical Harmonics”. In the present paper we deduct an explicit orthonormal system of modified spherical harmonics. Such a system was missing.
引用
收藏
页码:1241 / 1251
页数:10
相关论文
共 50 条
  • [41] Spherical Harmonics and the Icosahedron
    Hitchin, Nigel
    GROUPS AND SYMMETRIES: FROM NEOLITHIC SCOTS TO JOHN MCKAY, 2009, 47 : 215 - 231
  • [42] CUBIC HARMONICS AS LINEAR COMBINATIONS OF SPHERICAL HARMONICS
    MUGGLI, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (02): : 311 - &
  • [43] Generating Functions for Spherical Harmonics and Spherical Monogenics
    P. Cerejeiras
    U. Kähler
    R. Lávička
    Advances in Applied Clifford Algebras, 2014, 24 : 995 - 1004
  • [44] Modified Wilson Orthonormal Bases
    Piotr Wojdyłło
    Sampling Theory in Signal and Image Processing, 2007, 6 (2): : 223 - 235
  • [45] Generating Functions for Spherical Harmonics and Spherical Monogenics
    Cerejeiras, P.
    Kaehler, U.
    Lavicka, R.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (04) : 995 - 1004
  • [46] Localization of Orthonormal Sequences in the Spherical Mean Setting
    H. Lamouchi
    B. Majjaouli
    S. Omri
    Mediterranean Journal of Mathematics, 2016, 13 : 1855 - 1870
  • [47] Visualization of Orthonormal Triads in Cylindrical and Spherical Coordinates
    Lopez-Garcia, J.
    Jimenez Zamudio, J. J.
    Diaz Velarde, M. E. Canut
    APPLICATIONS OF COMPUTER ALGEBRA, 2017, 198 : 257 - 266
  • [48] Localization of Orthonormal Sequences in the Spherical Mean Setting
    Lamouchi, H.
    Majjaouli, B.
    Omri, S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1855 - 1870
  • [50] Localization and vector spherical harmonics
    von Brecht, James H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1622 - 1655