C4 photosynthesis, atmospheric CO2, and climate

被引:0
|
作者
James R. Ehleringer
Thure E. Cerling
Brent R. Helliker
机构
[1] Stable Isotope Ratio Facility for Environmental Research,
[2] Department of Biology,undefined
[3] University of Utah,undefined
[4] Salt Lake City,undefined
[5] UT 84112,undefined
[6] USA Fax: 801-581-4665; e-mail: ehleringer@bioscience.utah.edu,undefined
[7] Department of Geology and Geophysics,undefined
[8] University of Utah,undefined
[9] Salt Lake City,undefined
[10] UT 84112,undefined
[11] USA,undefined
来源
Oecologia | 1997年 / 112卷
关键词
Key words Photosynthesis; Carbon isotope ratio; Global change; Quantum yield; Light-use efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
The objectives of this synthesis are (1) to review the factors that influence the ecological, geographical, and palaeoecological distributions of plants possessing C4 photosynthesis and (2) to propose a hypothesis/model to explain both the distribution of C4 plants with respect to temperature and CO2 and why C4 photosynthesis is relatively uncommon in dicotyledonous plants (hereafter dicots), especially in comparison with its widespread distribution in monocotyledonous species (hereafter monocots). Our goal is to stimulate discussion of the factors controlling distributions of C4 plants today, historically, and under future elevated CO2 environments. Understanding the distributions of C3/C4 plants impacts not only primary productivity, but also the distribution, evolution, and migration of both invertebrates and vertebrates that graze on these plants. Sixteen separate studies all indicate that the current distributions of C4 monocots are tightly correlated with temperature: elevated temperatures during the growing season favor C4 monocots. In contrast, the seven studies on C4 dicot distributions suggest that a different environmental parameter, such as aridity (combination of temperature and evaporative potential), more closely describes their distributions. Differences in the temperature dependence of the quantum yield for CO2 uptake (light-use efficiency) of C3 and C4 species relate well to observed plant distributions and light-use efficiency is the only mechanism that has been proposed to explain distributional differences in C3/C4 monocots. Modeling of C3 and C4 light-use efficiencies under different combinations of atmospheric CO2 and temperature predicts that C4-dominated ecosystems should not have expanded until atmospheric CO2 concentrations reached the lower levels that are thought to have existed beginning near the end of the Miocene. At that time, palaeocarbonate and fossil data indicate a simultaneous, global expansion of C4-dominated grasslands. The C4 monocots generally have a higher quantum yield than C4 dicots and it is proposed that leaf venation patterns play a role in increasing the light-use efficiency of most C4 monocots. The reduced quantum yield of most C4 dicots is consistent with their rarity, and it is suggested that C4 dicots may not have been selected until CO2 concentrations reached their lowest levels during glacial maxima in the Quaternary. Given the intrinsic light-use efficiency advantage of C4 monocots, C4 dicots may have been limited in their distributions to the warmest ecosystems, saline ecosystems, and/or to highly disturbed ecosystems. All C4 plants have a significant advantage over C3 plants under low atmospheric CO2 conditions and are predicted to have expanded significantly on a global scale during full-glacial periods, especially in tropical regions. Bog and lake sediment cores as well as pedogenic carbonates support the hypothesis that C4 ecosystems were more extensive during the last glacial maximum and then decreased in abundance following deglaciation as atmospheric CO2 levels increased.
引用
收藏
页码:285 / 299
页数:14
相关论文
共 50 条
  • [41] Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?
    Jiao, Xiurong
    Korup, Kirsten
    Andersen, Mathias Neumann
    Sacks, Erik J.
    Zhu, Xin-Guang
    Laerke, Poul Erik
    Jorgensen, Uffe
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2017, 9 (01): : 18 - 30
  • [42] Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species
    Wang, Dan
    Heckathorn, Scott A.
    Barua, Deepak
    Joshi, Puneet
    Hamilton, E. William
    Lacroix, Jacob J.
    AMERICAN JOURNAL OF BOTANY, 2008, 95 (02) : 165 - 176
  • [43] Schizachyrium scoparium (C4) better tolerates drought than Andropogon gerardii (C4) via constant CO2 supply for photosynthesis during water stress
    Dekirmenjian, Alina
    Montano, Diego
    Budny, Michelle L.
    Lemoine, Nathan P.
    AOB PLANTS, 2024, 16 (02):
  • [44] The evolution of C4 photosynthesis
    Hibberd, Julian M.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S177 - S178
  • [45] Seeds of C4 photosynthesis
    Hibberd, Julian M.
    Furbank, Robert T.
    NATURE PLANTS, 2016, 2 (11)
  • [46] Mutants of C4 photosynthesis
    Leegood, RC
    Bailey, KJ
    Ireland, RJ
    Dever, LV
    Lea, PJ
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 3659 - 3664
  • [47] C4 PHOTOSYNTHESIS IN CHENOPODIACEAE
    OSMOND, CB
    ZEITSCHRIFT FUR PFLANZENPHYSIOLOGIE, 1970, 62 (02): : 129 - &
  • [48] The evolution of C4 photosynthesis
    Sage, RF
    NEW PHYTOLOGIST, 2004, 161 (02) : 341 - 370
  • [49] DIFFERENTIAL STOMATAL RESPONSE BETWEEN C3 AND C4 SPECIES TO ATMOSPHERIC CO2 CONCENTRATION AND LIGHT
    AKITA, S
    MOSS, DN
    CROP SCIENCE, 1972, 12 (06) : 789 - 793
  • [50] Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass
    Johnson, Scott N.
    Lopaticki, Goran
    Hartley, Susan E.
    PLOS ONE, 2014, 9 (03):