DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS

被引:0
|
作者
JIANG-HUA LU
VICTOR MOUQUIN
机构
[1] The University of Hong Kong,Department of Mathematics
[2] University of Toronto,Department of Mathematics
来源
Transformation Groups | 2018年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected complex semisimple Lie group, equipped with a standard multiplicative Poisson structure πst determined by a pair of opposite Borel subgroups (B, B_). We prove that for each υ in the Weyl group W of G, the double Bruhat cell Gυ,υ = BυB Ω B_υB_ in G, together with the Poisson structure πst, is naturally a Poisson groupoid over the Bruhat cell BυB/B in the flag variety G/B. Correspondingly, every symplectic leaf of πst in Gυ,υ is a symplectic groupoid over BυB/B. For u, υ ϵ W, we show that the double Bruhat cell (Gu,υ, πst) has a naturally defined left Poisson action by the Poisson groupoid (Gu,υ, πst) and a right Poisson action by the Poisson groupoid (Gu,υ, πst), and the two actions commute. Restricting to symplectic leaves of πst, one obtains commuting left and right Poisson actions on symplectic leaves in Gu,υ by symplectic leaves in Gu,u and Gυ,υ as symplectic groupoids.
引用
收藏
页码:765 / 800
页数:35
相关论文
共 50 条
  • [21] Connected components of real double Bruhat cells
    Zelevinsky, A
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (21) : 1131 - 1154
  • [22] Poisson sigma models and symplectic groupoids
    Cattaneo, AS
    Felder, G
    [J]. QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS, 2001, 198 : 61 - 93
  • [23] Poisson fibrations and fibered symplectic groupoids
    Brahic, Olivier
    Fernandes, Rui Loja
    [J]. POISSON GEOMETRY IN MATHEMATICS AND PHYSICS, 2008, 450 : 41 - 59
  • [24] SYMPLECTIC GROUPOIDS OF REDUCED POISSON SPACES
    XU, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 457 - 461
  • [25] Constant symplectic 2-groupoids
    Rajan Amit Mehta
    Xiang Tang
    [J]. Letters in Mathematical Physics, 2018, 108 : 1203 - 1223
  • [26] Constant symplectic 2-groupoids
    Mehta, Rajan Amit
    Tang, Xiang
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (05) : 1203 - 1223
  • [27] Bruhat order and nil-Hecke algebras for Weyl groupoids
    Angiono, Ivan
    Yamane, Hiroyuki
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)
  • [28] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [29] Symplectic groupoids and generalized almost subtangent manifolds
    Sahin, Fulya
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 156 - 167
  • [30] Double Bruhat Cells in Kac–Moody Groups and Integrable Systems
    Harold Williams
    [J]. Letters in Mathematical Physics, 2013, 103 : 389 - 419