Closed subspaces and some basic topological properties of noncommutative Orlicz spaces

被引:0
|
作者
LINING JIANG
ZHENHUA MA
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics
[2] Hebei University of Architecture,Department of Mathematics and Physics
来源
关键词
Noncommutative Orlicz spaces; -measurable operator; von Neumann algebra; Orlicz function; 46E30; 46L52; 46L89;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the noncommutative Orlicz space Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document}, which generalizes the concept of noncommutative Lp space, where ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {M}$\end{document} is a von Neumann algebra, and φ is an Orlicz function. As a modular space, the space Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} possesses the Fatou property, and consequently, it is a Banach space. In addition, a new description of the subspace Eφ(ℳ~,τ)=ℳ⋂Lφ(ℳ~,τ)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\varphi }(\tilde {\mathcal {M}},\tau )=\overline {\mathcal {M}\bigcap L_{\varphi }(\tilde {\mathcal {M}},\tau )}$\end{document} in Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document}, which is closed under the norm topology and dense under the measure topology, is given. Moreover, if the Orlicz function φ satisfies the Δ2-condition, then Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} is uniformly monotone, and convergence in the norm topology and measure topology coincide on the unit sphere. Hence, Eφ(ℳ~,τ)=Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\varphi }(\tilde {\mathcal {M}},\tau )=L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} if φ satisfies the Δ2-condition.
引用
收藏
页码:525 / 536
页数:11
相关论文
共 50 条