Closed subspaces and some basic topological properties of noncommutative Orlicz spaces

被引:0
|
作者
LINING JIANG
ZHENHUA MA
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics
[2] Hebei University of Architecture,Department of Mathematics and Physics
来源
关键词
Noncommutative Orlicz spaces; -measurable operator; von Neumann algebra; Orlicz function; 46E30; 46L52; 46L89;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the noncommutative Orlicz space Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document}, which generalizes the concept of noncommutative Lp space, where ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {M}$\end{document} is a von Neumann algebra, and φ is an Orlicz function. As a modular space, the space Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} possesses the Fatou property, and consequently, it is a Banach space. In addition, a new description of the subspace Eφ(ℳ~,τ)=ℳ⋂Lφ(ℳ~,τ)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\varphi }(\tilde {\mathcal {M}},\tau )=\overline {\mathcal {M}\bigcap L_{\varphi }(\tilde {\mathcal {M}},\tau )}$\end{document} in Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document}, which is closed under the norm topology and dense under the measure topology, is given. Moreover, if the Orlicz function φ satisfies the Δ2-condition, then Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} is uniformly monotone, and convergence in the norm topology and measure topology coincide on the unit sphere. Hence, Eφ(ℳ~,τ)=Lφ(ℳ~,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\varphi }(\tilde {\mathcal {M}},\tau )=L_{\varphi }(\tilde {\mathcal {M}},\tau )$\end{document} if φ satisfies the Δ2-condition.
引用
收藏
页码:525 / 536
页数:11
相关论文
共 50 条
  • [1] Closed subspaces and some basic topological properties of noncommutative Orlicz spaces
    Jiang, Lining
    Ma, Zhenhua
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 525 - 536
  • [2] Basic topological and geometric properties of Cesaro-Orlicz spaces
    Cui, Y
    Hudzik, H
    Petrot, N
    Suantai, S
    Szymaszkiewicz, A
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04): : 461 - 476
  • [3] Basic topological and geometric properties of Cesàro-Orlicz spaces
    Yunan Cui
    Henryk Hudzik
    Narin Petrot
    Suthep Suantai
    Alicja Szymaszkiewicz
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 : 461 - 476
  • [4] Basic Topological and Geometric Properties of Orlicz Spaces over an Arbitrary Set of Atoms
    Hudzik, Henryk
    Szymaszkiewicz, Lucjan
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (04): : 425 - 449
  • [6] Weak Orlicz spaces:Some basic properties and their applications to harmonic analysis
    LIU PeiDe
    WANG MaoFa
    [J]. Science China Mathematics, 2013, 56 (04) : 787 - 800
  • [7] Weak Orlicz spaces: Some basic properties and their applications to harmonic analysis
    Liu PeiDe
    Wang MaoFa
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (04) : 789 - 802
  • [8] Weak Orlicz spaces: Some basic properties and their applications to harmonic analysis
    PeiDe Liu
    MaoFa Wang
    [J]. Science China Mathematics, 2013, 56 : 789 - 802
  • [9] A remark on closed noncommutative subspaces
    Letzter, E. S.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (01) : 1 - 4
  • [10] SYMMETRICAL SUBSPACES OF ORLICZ SPACES
    DACUNHACASTELLE, D
    SCHREIBE.M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (08): : 629 - 631