Engineered 3D-printed artificial axons

被引:0
|
作者
Daniela Espinosa-Hoyos
Anna Jagielska
Kimberly A. Homan
Huifeng Du
Travis Busbee
Daniel G. Anderson
Nicholas X. Fang
Jennifer A. Lewis
Krystyn J. Van Vliet
机构
[1] Massachusetts Institute of Technology,Department of Chemical Engineering
[2] Singapore-MIT Alliance in Research & Technology (SMART),Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM)
[3] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[4] Wyss Institute for Biologically Inspired Engineering,School of Engineering and Applied Sciences
[5] Harvard University,Department of Mechanical Engineering
[6] Massachusetts Institute of Technology,David H. Koch Institute for Integrative Cancer Research
[7] Massachusetts Institute of Technology,Institute for Medical Engineering and Sciences
[8] Massachusetts Institute of Technology,Department of Biological Engineering
[9] Harvard-MIT Division of Health Sciences & Technology,undefined
[10] Massachusetts Institute of Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Myelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes’ production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells’ response to both physical cues and pharmacological agents.
引用
收藏
相关论文
共 50 条
  • [31] 3D-printed surgical guides
    Yilmaz, Alperen
    Badria, Adel F.
    Huri, Pinar Yilgor
    Huri, Gazi
    ANNALS OF JOINT, 2019, 4 (02):
  • [32] 3D-Printed Mechanochromic Materials
    Peterson, Gregory I.
    Larsen, Michael B.
    Ganter, Mark A.
    Storti, Duane W.
    Boydston, Andrew J.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) : 577 - 583
  • [33] 3D-Printed Transparent Glass
    Nguyen, Du T.
    Meyers, Cameron
    Yee, Timothy D.
    Dudukovic, Nikola A.
    Destino, Joel F.
    Zhu, Cheng
    Duoss, Eric B.
    Baumann, Theodore F.
    Suratwala, Tayyab
    Smay, James E.
    Dylla-Spears, Rebecca
    ADVANCED MATERIALS, 2017, 29 (26)
  • [34] Progress in 3D-printed micromachines
    Maruo S.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (09): : 734 - 739
  • [35] A review of 3D-printed sensors
    Ni, Yujie
    Ji, Ru
    Long, Kaiwen
    Bu, Ting
    Chen, Kejian
    Zhuang, Songlin
    APPLIED SPECTROSCOPY REVIEWS, 2017, 52 (07) : 623 - 652
  • [36] First 3D-printed pill
    Nature Biotechnology, 2015, 33 : 1014 - 1014
  • [37] 3D-Printed MEMS in Italy
    Aronne, Matilde
    Bertana, Valentina
    Schimmenti, Francesco
    Roppolo, Ignazio
    Chiappone, Annalisa
    Cocuzza, Matteo
    Marasso, Simone Luigi
    Scaltrito, Luciano
    Ferrero, Sergio
    MICROMACHINES, 2024, 15 (06)
  • [38] 3D-printed rocket fuel
    Button, Keith
    AEROSPACE AMERICA, 2019, 57 (04) : 18 - 21
  • [39] 3D-Printed Structural Pseudocapacitors
    Liu, Xinhua
    Jervis, Rhodri
    Maher, Robert C.
    Villar-Garcia, Ignacio J.
    Naylor-Marlow, Max
    Shearing, Paul R.
    Ouyang, Mengzheng
    Cohen, Lesley
    Brandon, Nigel P.
    Wu, Billy
    ADVANCED MATERIALS TECHNOLOGIES, 2016, 1 (09):
  • [40] 3D-Printed Lens Antenna
    Arya, Ravi Kumar
    Zhang, Shiyu
    Vardaxoglou, Yiannis
    Whittow, Will
    Mittra, Raj
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 7 - 8