Hamiltonian stability of Lagrangian tori in toric Kähler manifolds

被引:0
|
作者
Hajime Ono
机构
[1] Tokyo Institute of Technology,Department of Mathematics
来源
关键词
Lagrangian submanifold; Toric Kähler manifold; Hamiltonian stability;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,J,ω) be a compact toric Kähler manifold of dimℂ M=n and L a regular orbit of the Tn-action on M. In the present paper, we investigate Hamiltonian stability of L, which was introduced by Y.-G. Oh (Invent. Math.101, 501–519 (1990); Math. Z.212, 175–192) (1993)). As a result, we prove any regular orbit is Hamiltonian stable when (M,ω)=ℂℙn,ωFS) and (M,ω)=ℂℙn1× ℂℙn2,aωFS⊕ bωFS), where ωFS is the Fubini–Study Kähler form and a and b are positive constants. Moreover, they are locally Hamiltonian volume minimizing Lagrangian submanifolds.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
  • [31] K-STABILITY AND CANONICAL METRICS ON TORIC MANIFOLDS
    Wang, Xu-Jia
    Zhou, Bin
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (01): : 85 - 110
  • [32] Hamiltonian stationary tori in Kahler manifolds
    Butscher, Adrian
    Corvino, Justin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (1-2) : 63 - 100
  • [33] On the linear stability of nearly Kähler 6-manifolds
    Uwe Semmelmann
    Changliang Wang
    M. Y.-K. Wang
    Annals of Global Analysis and Geometry, 2020, 57 : 15 - 22
  • [34] Nontoric foliations by Lagrangian tori of toric Fano varieties
    Belev, S. A.
    Tyurin, N. A.
    MATHEMATICAL NOTES, 2010, 87 (1-2) : 43 - 51
  • [35] Nontoric foliations by Lagrangian tori of toric Fano varieties
    S. A. Belev
    N. A. Tyurin
    Mathematical Notes, 2010, 87 : 43 - 51
  • [36] On Certain Kähler Quotients of Quaternionic Kähler Manifolds
    V. Cortés
    J. Louis
    P. Smyth
    H. Triendl
    Communications in Mathematical Physics, 2013, 317 : 787 - 816
  • [37] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [38] On isometries of Kähler manifolds
    Róbert Szőke
    Acta Mathematica Hungarica, 2006, 111 : 77 - 79
  • [39] Mirror Map as Generating Function of Intersection Numbers: Toric Manifolds with Two Kähler Forms
    Masao Jinzenji
    Communications in Mathematical Physics, 2013, 323 : 747 - 811
  • [40] Special Kähler Manifolds
    Daniel S. Freed
    Communications in Mathematical Physics, 1999, 203 : 31 - 52