Onset of antiferromagnetism in heavy-fermion metals

被引:0
|
作者
A. Schröder
G. Aeppli
R. Coldea
M. Adams
O. Stockert
H.v. Löhneysen
E. Bucher
R. Ramazashvili
P. Coleman
机构
[1] Physikalisches Institut,Department of Physics
[2] Universität Karlsruhe,Department of Physics
[3] NEC,Department of Physics and Astronomy
[4] Oak Ridge National Laboratory,H.H. Wills Physics Laboratory
[5] ISIS Facility,undefined
[6] CCLRC,undefined
[7] Rutherford-Appleton Laboratory,undefined
[8] University of Konstanz,undefined
[9] Bell Laboratories,undefined
[10] Lucent Technologies ,undefined
[11] University of Illinois,undefined
[12] Center for Materials Theory,undefined
[13] Rutgers University,undefined
[14] University of Bristol,undefined
来源
Nature | 2000年 / 407卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures1. The second description, based on the physics of electron fluids or ‘Fermi liquids’, states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave2,3. It is at present unknown which view is appropriate at a ‘quantum critical point’, where the antiferromagnetic transition temperature vanishes4,5,6,7. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu6-xAux, which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (xc = 0.1 ), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.
引用
收藏
页码:351 / 355
页数:4
相关论文
共 50 条
  • [31] Heavy-fermion systems
    Fulde, P
    ANNALEN DER PHYSIK, 2000, 9 (11-12) : 871 - 883
  • [32] Common quantum phase transition in quasicrystals and heavy-fermion metals
    Shaginyan, V. R.
    Msezane, A. Z.
    Popov, K. G.
    Japaridze, G. S.
    Khodel, V. A.
    PHYSICAL REVIEW B, 2013, 87 (24)
  • [33] Peculiar Physics of Heavy-Fermion Metals: Theory versus Experiment
    Shaginyan, Vasily R.
    Msezane, Alfred Z.
    Japaridze, George S.
    ATOMS, 2022, 10 (03)
  • [34] Heavy-fermion systems
    Misra, Prasanta K.
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (01) : 25 - 31
  • [35] Heavy-Fermion Superconductivity
    Jones, Barbara
    PHYSICAL REVIEW X, 2011, 1 (01):
  • [36] HEAVY-FERMION MATERIALS
    FISK, Z
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 291 - INOR
  • [37] HEAVY-FERMION SYSTEMS
    STEWART, GR
    REVIEWS OF MODERN PHYSICS, 1984, 56 (04) : 755 - 787
  • [38] New observations concerning magnetism and superconductivity in heavy-fermion metals
    Steglich, F
    Gegenwart, P
    Geibel, C
    Helfrich, R
    Hellmann, P
    Lang, M
    Link, A
    Modler, R
    Sparn, G
    Buttgen, N
    Loidl, A
    PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) : 1 - 8
  • [39] Heavy-fermion states in non-Fermi-liquid impurity metals
    L. A. Manakova
    Journal of Experimental and Theoretical Physics Letters, 2000, 71 : 187 - 190
  • [40] HIGH-SPIN MAGNETIC HEAVY-FERMION STATES AT FERROMAGNET HEAVY-FERMION INTERFACES
    CHEN, CF
    PHYSICA B, 1994, 194 : 1343 - 1344