Freely Generated Vertex Algebras and Non–Linear Lie Conformal Algebras

被引:0
|
作者
Alberto De Sole
Victor G. Kac
机构
[1] Harvard University,Department of Mathematics
[2] MIT 77 Massachusetts Av,Department of Mathematics
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Quantum Computing;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of a non–linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a unique, up to isomorphism, non–linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.
引用
收藏
页码:659 / 694
页数:35
相关论文
共 50 条
  • [31] Conformal (σ, T)-derivations on Lie conformal algebras
    Feng, Tianqi
    Zhao, Jun
    Chen, Liangyun
    FILOMAT, 2024, 38 (02) : 357 - 368
  • [32] Associating quantum vertex algebras to deformed Heisenberg Lie algebras
    Haisheng Li
    Frontiers of Mathematics in China, 2011, 6 : 707 - 730
  • [33] Vertex Lie algebras and cyclotomic coinvariants
    Vicedo, Benoit
    Young, Charles
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)
  • [34] MV-algebras freely generated by finite Kleene algebras
    Stefano Aguzzoli
    Leonardo M. Cabrer
    Vincenzo Marra
    Algebra universalis, 2013, 70 : 245 - 270
  • [35] Differential graded vertex Lie algebras
    Caradot, Antoine
    Jiang, Cuipo
    Lin, Zongzhu
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [36] MV-algebras freely generated by finite Kleene algebras
    Aguzzoli, Stefano
    Cabrer, Leonardo M.
    Marra, Vincenzo
    ALGEBRA UNIVERSALIS, 2013, 70 (03) : 245 - 270
  • [37] Another class of simple graded Lie conformal algebras that cannot be embedded into general Lie conformal algebras
    Su, Yucai
    Yue, Xiaoqing
    JOURNAL OF ALGEBRA, 2021, 588 : 408 - 424
  • [38] ON FREELY GENERATED SEMIGRAPH C*-ALGEBRAS
    Burgstaller, Bernhard
    MATHEMATICA SLOVACA, 2016, 66 (01) : 257 - 274
  • [39] Trigonometric Lie algebras, affine Kac-Moody Lie algebras, and equivariant quasi modules for vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2023, 636 : 42 - 74