A Coalgebraic View of Heyting Duality

被引:10
|
作者
Brian A. Davey
John C. Galati
机构
[1] La Trobe University,Mathematics
[2] RMIT University,Mathematics
关键词
Coalgebra; Heyting algebra; Priestley duality;
D O I
10.1023/B:STUD.0000009559.44998.a3
中图分类号
学科分类号
摘要
We give a coalgebraic view of the restricted Priestley duality between Heyting algebras and Heyting spaces. More precisely, we show that the category of Heyting spaces is isomorphic to a full subcategory of the category of all Γ-coalgebras, based on Boolean spaces, where Γ is the functor which maps a Boolean space to its hyperspace of nonempty closed subsets. As an appendix, we include a proof of the characterization of Heyting spaces and the morphisms between them.
引用
收藏
页码:259 / 270
页数:11
相关论文
共 50 条
  • [1] Coalgebraic Logics & Duality
    Kupke, Clemens
    COALGEBRAIC METHODS IN COMPUTER SCIENCE (CMCS 2018), 2018, 11202 : 6 - 12
  • [2] On a coalgebraic view on Logic
    Hofmann, Dirk
    Martins, Manuel A.
    JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (05) : 1097 - 1106
  • [3] A coalgebraic view on reachability
    Wissmann, Thorsten
    Milius, Stefan
    Katsumata, Shin-ya
    Dubut, Jeremy
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (04): : 605 - 638
  • [4] Esakia Duality for Heyting Small Spaces
    Piekosz, Artur
    SYMMETRY-BASEL, 2022, 14 (12):
  • [5] A coalgebraic view on decorated traces
    Bonchi, F.
    Bonsangue, M.
    Caltais, G.
    Rutten, J.
    Silva, A.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2016, 26 (07) : 1234 - 1268
  • [6] Heyting Locally Small Spaces and Esakia Duality
    Piekosz, Artur
    SYMMETRY-BASEL, 2023, 15 (07):
  • [7] Grothendieck-like duality for Heyting algebras
    Antonio Di Nola
    George Georgescu
    algebra universalis, 2002, 47 : 215 - 221
  • [8] Heyting Algebras: Duality Theory, Vol 50
    Priestley, Hilary A.
    STUDIA LOGICA, 2021, 109 (05) : 1171 - 1173
  • [9] Grothendieck-like duality for Heyting algebras
    Di Nola, A
    Georgescu, G
    ALGEBRA UNIVERSALIS, 2002, 47 (03) : 215 - 221
  • [10] Bitopological duality for distributive lattices and Heyting algebras
    Bezhanishvili, Guram
    Bezhanishvili, Nick
    Gabelaia, David
    Kurz, Alexander
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2010, 20 (03) : 359 - 393