Heyting Locally Small Spaces and Esakia Duality

被引:0
|
作者
Piekosz, Artur [1 ]
机构
[1] Cracow Univ Technol, Dept Appl Math, Ul Warszawska 24, PL-31155 Krakow, Poland
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
tame topology; Esakia duality; locally small space; up-spectral space; STONE DUALITY; EXTENSIONS;
D O I
10.3390/sym15071342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop the theory of Heyting locally small spaces, including Stone-like dualities such as a new version of Esakia duality and a system of concrete isomorphisms and equivalences. In such a way, we continue building tame topology, realising Grothendieck's ideas. We use up-spectral spaces and define the standard up-spectralification of a Kolmogorov locally small space. This research gives more understanding of locally definable spaces over structures with topologies.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Esakia Duality for Heyting Small Spaces
    Piekosz, Artur
    SYMMETRY-BASEL, 2022, 14 (12):
  • [2] Esakia duals of regular Heyting algebras
    Gianluca Grilletti
    Davide Emilio Quadrellaro
    Algebra universalis, 2024, 85
  • [3] Stone Duality for Kolmogorov Locally Small Spaces
    Piekosz, Artur
    SYMMETRY-BASEL, 2021, 13 (10):
  • [4] Esakia duals of regular Heyting algebras
    Grilletti, Gianluca
    Quadrellaro, Davide Emilio
    ALGEBRA UNIVERSALIS, 2024, 85 (01)
  • [5] Esakia Style Duality for Implicative Semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    APPLIED CATEGORICAL STRUCTURES, 2013, 21 (02) : 181 - 208
  • [6] Esakia Style Duality for Implicative Semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Applied Categorical Structures, 2013, 21 : 181 - 208
  • [7] Duality for locally compact Lipschitz spaces
    Weaver, N
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (01) : 337 - 353
  • [8] The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem
    Bezhanishvili, Guram
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 161 (03) : 253 - 267
  • [9] A Coalgebraic View of Heyting Duality
    Brian A. Davey
    John C. Galati
    Studia Logica, 2003, 75 (3) : 259 - 270
  • [10] A frame-theoretic perspective on Esakia duality
    G. Bezhanishvili
    L. Carai
    P. J. Morandi
    Algebra universalis, 2023, 84