The q-deformed vector and q-deformed outer product

被引:0
|
作者
Won-Sang Chung
机构
[1] Gyeongsang National University,Theory Group, Department of Physics, Research Institute of Natural Sciences
关键词
Mathematical Physic; Quantum Group; Differential Calculus; Quantum Deformation; Korea Research Foundation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the q-deformed vector is introduced and the q-deformed outer product is investigated.
引用
下载
收藏
页码:5 / 9
页数:4
相关论文
共 50 条
  • [31] q-Deformed Loewner Evolution
    Gherardi, Marco
    Nigro, Alessandro
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 452 - 472
  • [32] q-Deformed nonlinear maps
    Jaganathan, R
    Sinha, S
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (03): : 411 - 421
  • [33] On q-deformed creation operator a
    Yang, YP
    Zhao, CF
    Yu, ZR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 191 - 194
  • [34] Q-DEFORMED PARACOMMUTATION RELATIONS
    RALCHENKO, YV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19): : L1155 - L1158
  • [35] q-Deformed kink solutions
    De Lima, A. F.
    De Lima Rodrigues, R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (17): : 3605 - 3613
  • [36] Q-DEFORMED JACOBI IDENTITY, Q-OSCILLATORS AND Q-DEFORMED INFINITE-DIMENSIONAL ALGEBRAS
    CHAICHIAN, M
    KULISH, P
    LUKIERSKI, J
    PHYSICS LETTERS B, 1990, 237 (3-4) : 401 - 406
  • [37] A q-deformed uncertainty relation
    Zhang, JZ
    PHYSICS LETTERS A, 1999, 262 (2-3) : 125 - 130
  • [38] On q-deformed hyponormal operators
    Ota, S
    MATHEMATISCHE NACHRICHTEN, 2003, 248 : 144 - 150
  • [39] Q-DEFORMED POINCARE ALGEBRA
    OGIEVETSKY, O
    SCHMIDKE, WB
    WESS, J
    ZUMINO, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) : 495 - 518
  • [40] q-deformed Circular Operators
    Ota, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (04) : 555 - 569