Rigidity of minimal submanifolds with flat normal bundle

被引:0
|
作者
Hai-Ping Fu
机构
[1] Nanchang University,Department of Mathematics
来源
关键词
Catenoid; minimal submanifolds; flat normal bundle;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn (n ≥ 3) be an n-dimensional complete immersed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{n - 2}} {n} $$\end{document}-super-stable minimal submanifold in an (n + p)-dimensional Euclidean space ℝn+p with flat normal bundle. We prove that if the second fundamental form of M satisfies some decay conditions, then M is an affine plane or a catenoid in some Euclidean subspace.
引用
收藏
页码:457 / 464
页数:7
相关论文
共 50 条
  • [31] A Bernstein-type theorem for ξ-submanifolds with flat normal bundle in the Euclidean spaces
    Jiang, Xu-Yong
    Sun, He-Jun
    Zhao, Pei-Biao
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 36 - 43
  • [32] On the normal bundle of submanifolds of Pn
    Badescu, Lucian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1505 - 1513
  • [33] Submanifolds with ample normal bundle
    Luza, Maycol Falla
    Loray, Frank
    Pereira, Jorge Vitorio
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (02) : 634 - 643
  • [34] THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE
    Cao, Shunjuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 135 - 142
  • [35] RIGIDITY THEOREMS FOR MINIMAL SUBMANIFOLDS IN A HYPERBOLIC SPACE
    Bezerra, Adriano C.
    Wang, Qiaoling
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 905 - 920
  • [36] Rigidity of complete minimal submanifolds in a hyperbolic space
    Hudson Pina de Oliveira
    Changyu Xia
    manuscripta mathematica, 2019, 158 : 21 - 30
  • [37] AN INTRINSIC RIGIDITY THEOREM FOR MINIMAL SUBMANIFOLDS IN A SPHERE
    LI, AM
    LI, JM
    ARCHIV DER MATHEMATIK, 1992, 58 (06) : 582 - 594
  • [38] RIGIDITY OF MINIMAL SUBMANIFOLDS IN SPACE-FORMS
    BARBOSA, JLM
    DAJCZER, M
    JORGE, LP
    MATHEMATISCHE ANNALEN, 1984, 267 (04) : 433 - 437
  • [39] ON YAU RIGIDITY THEOREM FOR MINIMAL SUBMANIFOLDS IN SPHERES
    Gu, Juan-Ru
    Xu, Hong-Wei
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (03) : 511 - 523
  • [40] CURVATURE PINCHING AND EIGENVALUE RIGIDITY FOR MINIMAL SUBMANIFOLDS
    MONTIEL, S
    ROS, A
    URBANO, F
    MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (04) : 537 - 548