Well-posedness and ill-posedness results for backward problem for fractional pseudo-parabolic equation

被引:0
|
作者
Le Dinh Long
Yong Zhou
Rathinasamy Sakthivel
Nguyen Huy Tuan
机构
[1] Thu Dau Mot University,Division of Applied Mathematics
[2] Macau University of Science and Technology,Faculty of Information Technology
[3] Xiangtan University,Faculty of Mathematics and Computational Science
[4] Bharathiar University,Department of Applied Mathematics
[5] University of Science,Faculty of Mathematics and Computer Science
[6] Vietnam National University,undefined
关键词
Backward problem; Caputo derivative; pseudo-parabolic equation; Regularity estimates; 26A33; 35B65; 35B05; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a pseudo-parabolic equation with the Caputo fractional derivative. By applying the properties of Mittag–Leffler functions and the method of eigenvalue expansion, under a suitable definition of mild solution of our problem, we obtain the existence result and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} regularity of the mild solution by using some Sobolev embeddings. Finally, we also give some examples to illustrate the proposed method.
引用
收藏
页码:175 / 206
页数:31
相关论文
共 50 条