On Fatou’s theorem

被引:0
|
作者
Arthur A. Danielyan
机构
[1] University of South Florida,Department of Mathematics and Statistics
来源
关键词
Bounded analytic function; Fatou’s theorem; Radial limit; set; Primary 30H05; 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a set on the unit circle T of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C$$\end{document}. We prove that there exists an f∈H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in H^\infty $$\end{document} which has no radial limits on E but has unrestricted limit at each point of T\E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T {\setminus } E$$\end{document} if and only if E is an Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} of measure zero. The necessity of the condition that E is an Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} is almost obvious and the necessity of the condition that E is of measure zero follows from Fatou’s theorem.
引用
收藏
相关论文
共 50 条