Investigation of a Polariton Condensate in Micropillars in a High Magnetic Field

被引:0
|
作者
A. V. Chernenko
A. S. Brichkin
S. I. Novikov
C. Schneider
S. Hoefling
机构
[1] Russian Academy of Sciences,Institute of Solid State Physics
[2] Universitat Wuerzburg,Technische Physik, Wilhelm Conrad Roentgen Research Center for Complex Material Systems
[3] Am Hubland,undefined
来源
Semiconductors | 2018年 / 52卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The photoluminescence of a nonequilibrium polariton condensate in cylindrical and rectangular micropillars etched on the surface of a high-Q GaAs microcavity is investigated in magnetic fields of up to 12 T. The measurements are carried out under different levels of nonresonant optical pumping with nanosecond laser pulses for a wide range of cavity detuning. As far as nonresonant excitation produces a high density of excitons in a reservoir, it should be expected that the exciton–polariton interaction, which depends on the pump level, has a considerable effect on the Zeeman splitting and polarization of the condensate. However, measurements of the Zeeman splitting and polarization in high magnetic fields demonstrate that only minor changes take place up to the highest available pump levels. This means that, in the case under study, the effect of exciton–polariton interaction on the polariton system is insignificant. At the same time, the data obtained provide an estimate for the exciton density in the reservoir. In contrast to cylindrical micropillars, the photoluminescence of the condensate in rectangular micropillars consists of two perpendicularly linearly polarized lines which retain a high degree of linear polarization even in a field as high as 12 T. The Zeeman splitting in this case is nearly independent of the pump power. The degrees of both circular and linear polarization change with pump power, but these changes are noticeably smaller than the ones predicted theoretically. This indicates that the system of polaritons in micropillars deviates considerably from thermodynamic equilibrium.
引用
收藏
页码:6 / 11
页数:5
相关论文
共 50 条
  • [21] Spatial coherence of a polariton condensate
    Deng, Hui
    Solomon, Glenn S.
    Hey, Rudolf
    Ploog, Klaus H.
    Yamamoto, Yoshihisa
    PHYSICAL REVIEW LETTERS, 2007, 99 (12)
  • [22] Polariton condensate transistor switch
    Gao, T.
    Eldridge, P. S.
    Liew, T. C. H.
    Tsintzos, S. I.
    Stavrinidis, G.
    Deligeorgis, G.
    Hatzopoulos, Z.
    Savvidis, P. G.
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [23] Polariton-generated intensity squeezing in semiconductor micropillars
    T. Boulier
    M. Bamba
    A. Amo
    C. Adrados
    A. Lemaitre
    E. Galopin
    I. Sagnes
    J. Bloch
    C. Ciuti
    E. Giacobino
    A. Bramati
    Nature Communications, 5
  • [24] Coherence and decoherence of a polariton condensate
    Haug, H.
    Cao, H. Thien
    Thoai, D. B. Tran
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [25] Polariton-generated intensity squeezing in semiconductor micropillars
    Boulier, T.
    Bamba, M.
    Amo, A.
    Adrados, C.
    Lemaitre, A.
    Galopin, E.
    Sagnes, I.
    Bloch, J.
    Ciuti, C.
    Giacobino, E.
    Bramati, A.
    NATURE COMMUNICATIONS, 2014, 5
  • [26] Quark condensate in a weak magnetic field
    Hofmann, Christoph P.
    PHYSICAL REVIEW D, 2019, 99 (01)
  • [27] Polariton lasing in high-quality selenide-based micropillars in the strong coupling regime
    Klein, T.
    Klembt, S.
    Durupt, E.
    Kruse, C.
    Hommel, D.
    Richard, M.
    APPLIED PHYSICS LETTERS, 2015, 107 (07)
  • [28] Quark condensate and magnetic moment in a strong magnetic field
    Wei, De-Xian
    Zhou, Li-Juan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2023, 32 (05):
  • [29] Investigation of Microcoils for High Magnetic Field Generation
    Grainys, A.
    Novickij, J.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2011, (03) : 63 - 66
  • [30] Chiral emission induced by optical Zeeman effect in polariton micropillars
    Real B.
    Carlon Zambon N.
    St-Jean P.
    Sagnes I.
    Lemaître A.
    Le Gratiet L.
    Harouri A.
    Ravets S.
    Bloch J.
    Amo A.
    Physical Review Research, 2021, 3 (04):