Non-parametric bootstrap tests for parametric distribution families

被引:0
|
作者
Gábor Szűcs
机构
[1] Bolyai Institute,
来源
Acta Scientiarum Mathematicarum | 2011年 / 77卷 / 3-4期
关键词
bootstrap; parametric estimation; empirical process; approximation; convergence in distribution; 62E20; 62F40; 62G30;
D O I
10.1007/BF03651319
中图分类号
学科分类号
摘要
Durbin’s estimated empirical process is a widely used tool to testing goodness of fit for parametric distribution families. In general, statistical methods based on the process are not distribution free and the critical values can not always be calculated in a theoretical way. One can avoid these difficulties by applying the parametric or the non-parametric bootstrap procedure. Although the parametric bootstrapped estimated empirical process is well investigated, only a few papers dealt with the non-parametric version. Recently, Babu and Rao pointed out that in the latter case a bias correction is needed, and they proved the weak convergence of the bootstrapped process in continuous distribution families. Our paper presents a weak approximation theorem for the non-parametric bootstrapped estimated empirical process using similar conditions under which Durbin’s non-bootstrapped process converges. The result covers the most important continuous and discrete distribution families. Simulation studies in the Poisson and the normal distribution are also reported.
引用
收藏
页码:703 / 723
页数:20
相关论文
共 50 条
  • [1] Non-parametric bootstrap tests for parametric distribution families
    Szucs, Gabor
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 703 - 723
  • [2] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [3] Non-parametric bootstrap recycling
    Ventura, V
    STATISTICS AND COMPUTING, 2002, 12 (03) : 261 - 273
  • [4] Non-parametric bootstrap recycling
    Valérie Ventura
    Statistics and Computing, 2002, 12 : 261 - 273
  • [5] Bootstrap non-parametric significance test
    Gu, Jingping
    Li, Dingding
    Liu, Dandan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (6-8) : 215 - 230
  • [6] The fusion of parametric and non-parametric hypothesis tests
    Singer, PF
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 780 - 784
  • [7] PARAMETRIC HYPOTHESES TESTING WITH NON-PARAMETRIC TESTS
    TYURIN, YN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 722 - &
  • [8] Efficiency analysis of German electricity distribution utilities - non-parametric and parametric tests
    von Hirschhausen, Christian
    Cullmann, Astrid
    Kappeler, Andreas
    APPLIED ECONOMICS, 2006, 38 (21) : 2553 - 2566
  • [9] Parametric and non-parametric bootstrap confidence intervals of C-Npk for exponential power distribution
    Saha, Mahendra
    Dey, Sanku
    Maiti, Sudhansu S.
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2018, 35 (03) : 160 - 169
  • [10] Non-parametric Bootstrap Method in Risk Management
    Valaskova, Katarina
    Spuchl'akova, Erika
    Adamko, Peter
    INTERNATIONAL CONFERENCE ON APPLIED ECONOMICS (ICOAE) 2015, 2015, 24 : 701 - 709