The thermal convection of a Jeffreys fluid subjected to a plane Poiseuille flow in a fluid-porous system composed of a fluid layer and a porous layer is studied in the paper. A linear stability analysis and a Chebyshev τ-QZ algorithm are employed to solve the thermal mixed convection. Unlike the case in a single layer, the neutral curves of the two-layer system may be bi-modal in the proper depth ratio of the two layers. We find that the longitudinal rolls (LRs) only depend on the depth ratio. With the existence of the shear flow, the effects of the depth ratio, the Reynolds number, the Prandtl number, the stress relaxation, and strain retardation times on the transverse rolls (TRs) are also studied. Additionally, the thermal instability of the viscoelastic fluid is found to be more unstable than that of the Newtonian fluid in a two-layer system. In contrast to the case for Newtonian fluids, the TRs rather than the LRs may be the preferred mode for the viscoelastic fluids in some cases.
机构:
Aix Marseille Univ, Inst Math Marseille, CNRS UMR 7373, Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, FranceAix Marseille Univ, Inst Math Marseille, CNRS UMR 7373, Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Angot, Philippe
Goyeau, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS UPR 288, Ecole Cent Supelec, EM2C, 8-10 Rue Joliot Curie, F-91190 Gif Sur Yvette, FranceAix Marseille Univ, Inst Math Marseille, CNRS UMR 7373, Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Goyeau, Benoit
Ochoa-Tapia, J. Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Proc & Hidraul, Mexico City 09340, DF, MexicoAix Marseille Univ, Inst Math Marseille, CNRS UMR 7373, Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, France